3 resultados para Postexercise hypotension
em ABACUS. Repositorio de Producción Científica - Universidad Europea
Resumo:
The impact of intravenous (IV) beta-blockers before primary percutaneous coronary intervention (PPCI) on infarct size and clinical outcomes is not well established. This study sought to conduct the first double-blind, placebo-controlled international multicenter study testing the effect of early IV beta-blockers before PPCI in a general ST-segment elevation myocardial infarction (STEMI) population. STEMI patients presenting <12 h from symptom onset in Killip class I to II without atrioventricular block were randomized 1:1 to IV metoprolol (2 × 5-mg bolus) or matched placebo before PPCI. Primary endpoint was myocardial infarct size as assessed by cardiac magnetic resonance imaging (CMR) at 30 days. Secondary endpoints were enzymatic infarct size and incidence of ventricular arrhythmias. Safety endpoints included symptomatic bradycardia, symptomatic hypotension, and cardiogenic shock. A total of 683 patients (mean age 62 ± 12 years; 75% male) were randomized to metoprolol (n = 336) or placebo (n = 346). CMR was performed in 342 patients (54.8%). Infarct size (percent of left ventricle [LV]) by CMR did not differ between the metoprolol (15.3 ± 11.0%) and placebo groups (14.9 ± 11.5%; p = 0.616). Peak and area under the creatine kinase curve did not differ between both groups. LV ejection fraction by CMR was 51.0 ± 10.9% in the metoprolol group and 51.6 ± 10.8% in the placebo group (p = 0.68). The incidence of malignant arrhythmias was 3.6% in the metoprolol group versus 6.9% in placebo (p = 0.050). The incidence of adverse events was not different between groups. In a nonrestricted STEMI population, early intravenous metoprolol before PPCI was not associated with a reduction in infarct size. Metoprolol reduced the incidence of malignant arrhythmias in the acute phase and was not associated with an increase in adverse events.
Resumo:
The aim is tassess the tolerability of initiating/uptitrating sacubitril/valsartan (LCZ696) from 50 to 200 mg twice daily (target dose) over 3 and 6 weeks in heart failure (HF) patients (ejection fraction ≤35%). A 5-day open-label run-in (sacubitril/valsartan 50 mg twice daily) preceded an 11-week, double-blind, randomization period [100 mg twice daily for 2 weeks followed by 200 mg twice daily (‘condensed’ regimen) vs. 50 mg twice daily for 2 weeks, 100 mg twice daily for 3 weeks, followed by 200 mg twice daily (‘conservative’ regimen)]. Patients were stratified by pre-study dose of angiotensin-converting enzyme inhibitor/angiotensin-receptor blocker (ACEI/ARB; low-dose stratum included ACEI/ARB-naïve patients). Of 540 patients entering run-in, 498 (92%) were randomized and 429 (86.1% of randomized) completed the study. Pre-defined tolerability criteria were hypotension, renal dysfunction and hyperkalaemia; and adjudicated angioedema, which occurred in (‘condensed’ vs. ‘conservative’) 9.7% vs. 8.4% (P = 0.570), 7.3% vs. 7.6% (P = 0.990), 7.7% vs. 4.4% (P = 0.114), and 0.0% vs. 0.8% of patients, respectively. Corresponding proportions for pre-defined systolic blood pressure <95 mmHg, serum potassium >5.5 mmol/L, and serum creatinine >3.0 mg/dL were 8.9% vs. 5.2% (P = 0.102), 7.3% vs. 4.0% (P = 0.097), and 0.4% vs. 0%, respectively. In total, 378 (76%) patients achieved and maintained sacubitril/valsartan 200 mg twice daily without dose interruption/down-titration over 12 weeks (77.8% vs. 84.3% for ‘condensed’ vs. ‘conservative’; P = 0.078). Rates by ACEI/ARB pre-study dose stratification were 82.6% vs. 83.8% (P = 0.783) for high-dose/‘condensed’ vs. high-dose/‘conservative’ and 84.9% vs. 73.6% (P = 0.030) for low-dose/‘conservative’ vs. low-dose/‘condensed’. Initiation/uptitration of sacubitril/valsartan from 50 to 200 mg twice daily over 3 or 6 weeks had a tolerability profile in line with other HF treatments. More gradual initiation/uptitration maximized attainment of target dose in the low-dose ACEI/ARB group.
Resumo:
Mechanisms contributing to pulmonary and systemic injury induced by high tidal volume (VT) mechanical ventilation are not well known. We tested the hypothesis that increased peroxynitrite formation is involved in organ injury and dysfunction induced by mechanical ventilation. Male Sprague-Dawley rats were subject to low- (VT, 9 mL/kg; positive end-expiratory pressure, 5 cmH2O) or high- (VT, 25 mL/kg; positive end-expiratory pressure, 0 cmH2O) VT mechanical ventilation for 120 min, and received 1 of 3 treatments: 3-aminobenzamide (3-AB, 10 mg/kg, intravenous, a poly adenosine diphosphate ribose polymerase [PARP] inhibitor), or the metalloporphyrin manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP, 5 mg/kg intravenous, a peroxynitrite scavenger), or no treatment (control group), 30 min before starting the mechanical ventilation protocol (n = 8 per group, 6 treatment groups). We measured mean arterial pressure, peak inspiratory airway pressure, blood chemistry, and gas exchange. Oxidation (fluorescence for oxidized dihydroethidium), protein nitration (immunofluorescence and Western blot for 3-nitrotyrosine), PARP protein (Western blot) and gene expression of the nitric oxide (NO) synthase (NOS) isoforms (quantitative real-time reverse transcription polymerase chain reaction) were measured in lung and vascular tissue. Lung injury was quantified by light microscopy. High-VT mechanical ventilation was associated with hypotension, increased peak inspiratory airway pressure, worsened oxygenation; oxidation and protein nitration in lung and aortic tissue; increased PARP protein in lung; up-regulation of NOS isoforms in lung tissue; signs of diffuse alveolar damage at histological examination. Treatment with 3AB or MnTMPyP attenuated the high-VT mechanical ventilation-induced changes in pulmonary and cardiovascular function; down-regulated the expression of NOS1, NOS2, and NOS3; decreased oxidation and nitration in lung and aortic tissue; and attenuated histological changes. Increased peroxynitrite formation is involved in mechanical ventilation-induced pulmonary and vascular dysfunction.