10 resultados para Physical exercise
em ABACUS. Repositorio de Producción Científica - Universidad Europea
Resumo:
Regular physical exercise provides many health benefits, protecting against the development of chronic diseases, and improving quality of life. Some of the mechanisms by which exercise provides these effects are the promotion of an anti-inflammatory state, reinforcement of the neuromuscular function, and activation of the hypothalamic–pituitary–adrenal (HPA) axis. Recently, it has been proposed that physical exercise is able to modify gut microbiota, and thus this could be another factor by which exercise promotes well-being, since gut microbiota appears to be closely related to health and disease. The purpose of this paper is to review the recent findings on gut microbiota modification by exercise, proposing several mechanisms by which physical exercise might cause changes in gut microbiota.
Resumo:
Depression is a major medical and social problem. Here we review current body of knowledge on the benefits of exercise as an effective strategy for both the prevention and treatment of this condition. We also analyze the biological pathways involved in such potential benefits, which include changes in neurotrophic factors, oxidative stress and inflammation, telomere length, brain volume and microvessels, neurotransmitters or hormones. We also identify major caveats in this field of research: further studies are needed to identify which are the most appropriate types of exercise interventions (intensity, duration, or frequency) to treat and prevent depression.
Resumo:
The so-called toxic triad of factors linked to cancer, namely obesity, poor cardiorespiratory fitness and physical inactivity, increase the risk of cancer and, when cancer is present, worsen its prognosis. Thus, obesity and a sedentary lifestyle have been linked to an elevated cancer risk whereas regular physical exercise and good cardiorespiratory function (CRF) diminish this risk. Despite genetic risk factors, there is evidence to show that some lifestyle modifications are capable of reducing the incidence of cancer and its associated morbidity and mortality. Regular physical exercise targeted at maintaining body weight within healthy limits and improving CRF will reduce a person's cancer risk and, once diagnosed, will also improve its prognosis, reducing mortality and the risk of disease recurrence through similar effects. In this review, we describe how physical activity can be used as a pleiotropic, coadjuvant tool to minimize the toxic triad for cancer and update the mechanisms proposed to date for the effects observed.
Resumo:
It is well-recognized that exercise improves mental health, e.g., by decreasing depressive behaviors, improving hippocampal-dependent learning and neurogenesis, and increasing dendritic plasticity. Yet how exercise influences the brain at the molecular level is not clearly understood. Yau et al recently reported that the antidepressant effects of physical exercise are mainly mediated by adiponectin, an adipocyte-secreted hormone ('adipocytokine') with neuroprotective effects at the central nervous system level (Yau et al., 2014). This article is protected by copyright. All rights reserved
Resumo:
We investigated the effect of different exercise modalities on high sensitivity-C reactive protein (hs-CRP) and other inflammatory markers in patients with type 2 diabetes and the metabolic syndrome. Eighty-two patients were randomized into 4 groups: sedentary control (A); receiving counseling to perform low-intensity physical activity (B); performing prescribed and supervised high-intensity aerobic (C) or aerobic + resistance (D) exercise (with the same caloric expenditure) for 12 months. Evaluation of leisure-time physical activity and assessment of physical fitness, cardiovascular risk factors and inflammatory biomarkers was performed at baseline and every 3 months. Volume of physical activity increased and HbA1c decreased in Groups B–D. VO2max, HOMA-IR index, HDL-cholesterol, waist circumference and albuminuria improved in Groups C and D, whereas strength and flexibility improved only in Group D. Levels of hs-CRP decreased in all three exercising groups, but the reduction was significant only in Groups C and D, and particularly in Group D. Changes in VO2max and the exercise modalities were strong predictors of hs-CRP reduction, independent of body weight. Leptin, resistin and interleukin-6 decreased, whereas adiponectin increased in Groups C and D. Interleukin-1β, tumor necrosis factor-α and interferon-γ decreased, whereas anti-inflammatory interleukin-4 and 10 increased only in Group D. In conclusion, physical exercise in type 2 diabetic patients with the metabolic syndrome is associated with a significant reduction of hs-CRP and other inflammatory and insulin resistance biomarkers, independent of weight loss. Long-term high-intensity (preferably mixed) training, in addition to daytime physical activity, is required to obtain a significant anti-inflammatory effect.
Resumo:
Objectives—Exercise is known to cause changes in the concentration of salivary components such as amylase, Na, and Cl. The aim of this investigation was to evaluate the eVect of physical exercise on the levels of trace elements and electrolytes in whole (mixed) saliva. Methods—Forty subjects performed a maximal exercise test on a cycle ergometer. Samples of saliva were obtained before and immediately after the exercise test. Sample concentrations of Fe, Mg, Sc, Cr, Mn, Co, Cu, Zn, Se, Sr, Ag, Sb, Cs, and Hg were determined by inductively coupled plasma mass spectrometry and concentrations of Ca and Na by atomic absorption spectrometry. Results—After exercise, Mg and Na levels showed a significant increase (p<0.05) while Mn levels fell (p<0.05). Zn/Cu molar ratios were unaVected by exercise. Conclusions—Intense physical exercise induced changes in the concentrations of only three (Na, Mg, and Mn) of the 16 elements analysed in the saliva samples. Further research is needed to assess the clinical implications of these findings.
Resumo:
Pregnancy and motherhood have been historically considered as reasons why elite sportswomen may end their sport careers. During pregnancy, the safety of both mother and baby has been identified as a key reason for ceasing sport participation. Recent “official” statistics on how many elite athletes are mothers suggest that pregnancy, motherhood, and sport could be no longer mutually exclusive. The aim of this qualitative phenomenological study was to describe the lived pregnancy of Spanish elite sportswomen. Spanish elite sportswomen (n = 20) aged between 18 and 65 years that had been pregnant during their sporting professional career and after the end of their pregnancy had taken up again their professional sporting career for at least one year were included. Data were collected from May 2010 to April 2012 using in-depth personal interviews, investigator’s field notes, and extracts from the participants’ personal letters. Identified themes included: choosing the right moment; fears and doubts; and justifying physical exercise. By giving voice to these elite Spanish sportswomen, their pregnancy experiences are made visible, which might help to gain a better understanding into their expectations and develop policies and practices focused on elite sportswomen during and after pregnancy.
Resumo:
Chronic graft-versus-host disease (cGVHD) is a frequent cause of morbimortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT), and severely compromises patients' physical capacity. Despite the aggressive nature of the disease, aerobic exercise training can positively impact survival as well as clinical and functional parameters. We analyzed potential mechanisms underlying the recently reported cardiac function improvement in an exercise-trained cGVHD murine model receiving lethal total body irradiation and immunosuppressant treatment (Fiuza-Luces et al., 2013. Med Sci Sports Exerc 45, 1703-1711). We hypothesized that a cellular quality-control mechanism that is receiving growing attention in biomedicine, autophagy, was involved in such improvement. Our results suggest that exercise training elicits a positive autophagic adaptation in the myocardium that may help preserve cardiac function even at the end-stage of a devastating disease like cGVHD. These preliminary findings might provide new insights into the cardiac exercise benefits in chronic/debilitating conditions.
Resumo:
Exercise may be described as a polypill to prevent and/or treat almost every chronic disease, with obvious benefits such as its low cost and practical lack of adverse effects. Implementing physical activity interventions in public health is therefore a goal at the medical, social, and economic levels. This chapter describes the importance of health promotion through physical activity and discusses the impacts of exercise on the most prevalent chronic diseases, namely metabolic syndrome-related disorders, cardiovascular diseases, cancer, and Alzheimer's disease. For each of these chronic conditions, we discuss the epidemiological evidence supporting a beneficial role of exercise, provide guidelines for exercise prescription, and describe the biological mechanisms whereby exercise exerts its modulatory effects.
Resumo:
Exercise improves functional capacity in spinal cord injury (SCI). However, exhaustive exercise, especially when sporadic, is linked to the production of reactive oxygen species that may have a detrimental effect on SCI. We aimed to study the effect of a single bout of exhaustive exercise on systemic oxidative stress parameters and on the expression of antioxidant enzymes in individuals with paraplegia. The study was conducted in the Physical Therapy department and the Physical Education and Sports department of the University of Valencia. Sixteen paraplegic subjects were submitted to a graded exercise test (GET) until volitional exhaustion. They were divided into active or non-active groups. Blood samples were drawn immediately, 1 and 2 h after the GET. We determined plasma malondialdehyde (MDA) and protein carbonylation as markers of oxidative damage. Antioxidant gene expression (catalase and glutathione peroxidase-GPx) was determined in peripheral blood mononuclear cells. We found a significant increase in plasma MDA and protein carbonyls immediately after the GET (P<0.05). This increment correlated significantly with the lactate levels. Active paraplegics showed lower levels of exercise-induced oxidative damage (P<0.05) and higher exercise-induced catalase (P<0.01) and GPx (P<0.05) gene expression after the GET. These results suggest that exercise training may be useful in SCI patients to develop systemic antioxidant defenses that may protect them against exercise-induced oxidative damage.