1 resultado para PRINCIPAL COMPONENTS-ANALYSIS

em ABACUS. Repositorio de Producción Científica - Universidad Europea


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Undergraduate psychology students rated expectations of a bogus professor (randomly designated a man or woman and hot versus not hot) based on an online rating and sample comments as found on RateMyProfessors.com (RMP). Five professor qualities were derived using principal components analysis (PCA): dedication, attractiveness, enhancement, fairness, and clarity. Participants rated current psychology professors on the same qualities. Current professors were divided based on gender (man or woman), age (under 35 or 35 and older), and attractiveness (at or below the median or above the median). Using multivariate analysis of covariance (MANCOVA), students expected hot professors to be more attractive but lower in clarity. They rated current professors as lowest in clarity when a man and 35 or older. Current professors were rated significantly lower in dedication, enhancement, fairness, and clarity when rated at or below the median on attractiveness. Results, with previous research, suggest numerous factors, largely out of professors’ control, influencing how students interpret and create professor ratings. Caution is therefore warranted in using online ratings to select courses or make hiring and promotion decisions.