3 resultados para PERIPHERAL-BLOOD LYMPHOCYTES
em ABACUS. Repositorio de Producción Científica - Universidad Europea
Resumo:
Alzheimer's disease (AD) is becoming a growing global problem, and there is an urgent need to identify reliable blood biomarkers of the risk and progression of this condition. A potential candidate is the brain-derived neurotrophic factor (BDNF), which modulates major trophic effects in the brain. However, findings are apparently inconsistent regarding peripheral blood BDNF levels in AD patients vs. healthy people. We thus performed a systematic review and meta-analysis of the studies that have examined peripheral BDNF levels in patients with AD or mild cognitive impairment (MCI) and healthy controls. We searched articles through PubMed, EMBASE, and hand searching. Over a total pool of 2061 potential articles, 26 met all inclusion criteria (including a total of 1584 AD patients, 556 MCI patients, and 1294 controls). A meta-analysis of BDNF levels between early AD and controls showed statistically significantly higher levels (SMD [95 % CI]: 0.72 [0.31, 1.13]) with no heterogeneity. AD patients with a low (<20) mini-mental state examination (MMSE) score had lower peripheral BDNF levels compared with controls (SMD [95 % CI]: -0.33 [-0.60, -0.05]). However, we found no statistically significant difference in blood (serum/plasma) BDNF levels between all AD patients and controls (standard mean difference, SMD [95 % CI]: -0.16 [-0.4, 0.07]), and there was heterogeneity among studies (P < 0.0001, I 2 = 85.8 %). There were no differences in blood BDNF levels among AD or MCI patients vs. controls by subgroup analyses according to age, sex, and drug use. In conclusion, this meta-analysis shows that peripheral blood BDNF levels seem to be increased in early AD and decreased in AD patients with low MMSE scores respectively compared with their age- and sex-matched healthy referents. At present, however, this could not be concluded from individual studies.
Resumo:
Exercise improves functional capacity in spinal cord injury (SCI). However, exhaustive exercise, especially when sporadic, is linked to the production of reactive oxygen species that may have a detrimental effect on SCI. We aimed to study the effect of a single bout of exhaustive exercise on systemic oxidative stress parameters and on the expression of antioxidant enzymes in individuals with paraplegia. The study was conducted in the Physical Therapy department and the Physical Education and Sports department of the University of Valencia. Sixteen paraplegic subjects were submitted to a graded exercise test (GET) until volitional exhaustion. They were divided into active or non-active groups. Blood samples were drawn immediately, 1 and 2 h after the GET. We determined plasma malondialdehyde (MDA) and protein carbonylation as markers of oxidative damage. Antioxidant gene expression (catalase and glutathione peroxidase-GPx) was determined in peripheral blood mononuclear cells. We found a significant increase in plasma MDA and protein carbonyls immediately after the GET (P<0.05). This increment correlated significantly with the lactate levels. Active paraplegics showed lower levels of exercise-induced oxidative damage (P<0.05) and higher exercise-induced catalase (P<0.01) and GPx (P<0.05) gene expression after the GET. These results suggest that exercise training may be useful in SCI patients to develop systemic antioxidant defenses that may protect them against exercise-induced oxidative damage.
Resumo:
McArdle disease is a metabolic disorder caused by pathogenic mutations in the PYGM gene. Timely diagnosis can sometimes be difficult with direct genomic analysis, which requires additional studies of cDNA from muscle transcripts. Although the "nonsense-mediated mRNA decay" (NMD) eliminates tissue-specific aberrant transcripts, there is some residual transcription of tissue-specific genes in virtually all cells, such as peripheral blood mononuclear cells (PBMCs).We studied a subset of the main types of PYGM mutations (deletions, missense, nonsense, silent, or splicing mutations) in cDNA from easily accessible cells (PBMCs) in 12 McArdle patients.Analysis of cDNA from PBMCs allowed detection of all mutations. Importantly, the effects of mutations with unknown pathogenicity (silent and splicing mutations) were characterized in PBMCs. Because the NMD mechanism does not seem to operate in nonspecific cells, PBMCs were more suitable than muscle biopsies for detecting the pathogenicity of some PYGM mutations, notably the silent mutation c.645G>A (p.K215=), whose effect in the splicing of intron 6 was unnoticed in previous muscle transcriptomic studies.We propose considering the use of PBMCs for detecting mutations that are thought to cause McArdle disease, particularly for studying their actual pathogenicity.