4 resultados para Medicamento

em ABACUS. Repositorio de Producción Científica - Universidad Europea


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las quinolonas son uno de los tipos de antibióticos cuyas tasas de resistencia se han visto incrementadas en los últimos años. A nivel molecular, bloquean a las topoisomerasas tipo II generando cortes de doble cadena (double strand breaks, DSBs) en el ADN. Se ha propuesto que estos DSBs podrían tener un doble papel, como mediadores de su efecto bactericida y también como responsables de desencadenar los mecanismos de resistencia y tolerancia a las quinolonas. En el presente trabajo hemos estudiado la implicación de los mecanismos de reparación de DSBs en la sensibilidad a las quinolonas: reanudación de horquillas de replicación paradas dependiente de recombinación (RFR), inducción de la respuesta SOS, reparación por síntesis translesional (TLS) y escisión de nucleótidos (NER). Para ello, en los laboratorios de la Universidad Europea de Madrid, se han analizado las concentraciones mínimas inhibitorias (CMIs) de tres quinolonas diferentes en mutantes procedentes de varias colecciones de cultivos tipo de Escherichia coli. Mutantes en recA, recBC, priA y lexA mostraron una disminución significativa de la CMI a todas las quinolonas. No se observaron cambios significativos en estirpes mutantes en los mecanismos de reparación por TLS y NER. Estos datos indican que, en presencia de quinolonas, los mecanismos de RFR y la inducción de la respuesta SOS estarían implicados en la aparición de mecanismos de sensibilidad a quinolonas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to establish guidelines for the optimization of biologic therapies for health professionals involved in the management of patients with RA, AS and PsA. Recommendations were established via consensus by a panel of experts in rheumatology and hospital pharmacy, based on analysis of available scientific evidence obtained from four systematic reviews and on the clinical experience of panellists. The Delphi method was used to evaluate these recommendations, both between panellists and among a wider group of rheumatologists. Previous concepts concerning better management of RA, AS and PsA were reviewed and, more specifically, guidelines for the optimization of biologic therapies used to treat these diseases were formulated. Recommendations were made with the aim of establishing a plan for when and how to taper biologic treatment in patients with these diseases. The recommendations established herein aim not only to provide advice on how to improve the risk:benefit ratio and efficiency of such treatments, but also to reduce variability in daily clinical practice in the use of biologic therapies for rheumatic diseases

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Edoxaban, an oral factor Xa inhibitor, is non-inferior for prevention of stroke and systemic embolism in patients with atrial fibrillation and is associated with less bleeding than well controlled warfarin therapy. Few safety data about edoxaban in patients undergoing electrical cardioversion are available. Methods We did a multicentre, prospective, randomised, open-label, blinded-endpoint evaluation trial in 19 countries with 239 sites comparing edoxaban 60 mg per day with enoxaparin–warfarin in patients undergoing electrical cardioversion of non-valvular atrial fibrillation. The dose of edoxaban was reduced to 30 mg per day if one or more factors (creatinine clearance 15–50 mL/min, low bodyweight [≤60 kg], or concomitant use of P-glycoprotein inhibitors) were present. Block randomisation (block size four)—stratified by cardioversion approach (transoesophageal echocardiography [TEE] or not), anticoagulant experience, selected edoxaban dose, and region—was done through a voice-web system. The primary efficacy endpoint was a composite of stroke, systemic embolic event, myocardial infarction, and cardiovascular mortality, analysed by intention to treat. The primary safety endpoint was major and clinically relevant non-major (CRNM) bleeding in patients who received at least one dose of study drug. Follow-up was 28 days on study drug after cardioversion plus 30 days to assess safety. This trial is registered with ClinicalTrials.gov, number NCT02072434. Findings Between March 25, 2014, and Oct 28, 2015, 2199 patients were enrolled and randomly assigned to receive edoxaban (n=1095) or enoxaparin–warfarin (n=1104). The mean age was 64 years (SD 10·54) and mean CHA2DS2-VASc score was 2·6 (SD 1·4). Mean time in therapeutic range on warfarin was 70·8% (SD 27·4). The primary efficacy endpoint occurred in five (<1%) patients in the edoxaban group versus 11 (1%) in the enoxaparin–warfarin group (odds ratio [OR] 0·46, 95% CI 0·12–1·43). The primary safety endpoint occurred in 16 (1%) of 1067 patients given edoxaban versus 11 (1%) of 1082 patients given enoxaparin–warfarin (OR 1·48, 95% CI 0·64–3·55). The results were independent of the TEE-guided strategy and anticoagulation status. Interpretation ENSURE-AF is the largest prospective randomised clinical trial of anticoagulation for cardioversion of patients with non-valvular atrial fibrillation. Rates of major and CRNM bleeding and thromboembolism were low in the two treatment groups. Funding Daiichi Sankyo provided financial support for the study. © 2016 Elsevier Ltd

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapamycin consistently increases longevity in mice although the mechanism of action of this drug is unknown. In the present investigation we studied the effect of rapamycin on mitochondrial oxidative stress at the same dose that is known to increase longevity in mice (14 mg of rapamycin/kg of diet). Middle aged mice (16 months old) showed significant age-related increases in mitochondrial ROS production at complex I, accumulation of mtDNA fragments inside nuclear DNA, mitochondrial protein lipoxidation, and lipofuscin accumulation compared to young animals (4 months old) in the liver. After 7 weeks of dietary treatment all those increases were totally or partially (lipofuscin) abolished by rapamycin, middle aged rapamycin-treated animals showing similar levels in those parameters to young animals. The decrease in mitochondrial ROS production was due to qualitative instead of quantitative changes in complex I. The decrease in mitochondrial protein lipoxidation was not due to decreases in the amount of highly oxidizable unsaturated fatty acids. Rapamycin also decreased the amount of RAPTOR (of mTOR complex) and increased the amounts of the PGC1-α and ATG13 proteins. The results are consistent with the possibility that rapamycin increases longevity in mice at least in part by lowering mitochondrial ROS production and increasing autophagy, decreasing the derived final forms of damage accumulated with age which are responsible for increased longevity. The decrease in lipofuscin accumulation induced by rapamycin adds to previous information suggesting that the increase in longevity induced by this drug can be due to a decrease in the rate of aging. © 2016 Elsevier Inc.