3 resultados para Left heart chambers structure
em ABACUS. Repositorio de Producción Científica - Universidad Europea
Resumo:
The interest in the study of ventricular function has grown considerably in the last decades. In this review, we analyse the extreme values of ventricular function as obtained with Doppler echocardiography. We mainly focus on the parameters that have been used throughout the history of Doppler echocardiography to assess left ventricular (LV) systolic and diastolic function. The ‘athlete's heart’ would be the highest expression of ventricular function whereas its lowest expression is represented by the failing heart, independently from the original aetiology leading to this condition. There are, however, morphological similarities (dilation and hypertrophy) between the athlete's and the failing heart, which emerge as physiological and pathophysiological adaptations, respectively. The introduction of new assessment techniques, specifically speckle tracking, may provide new insight into the properties that determine ventricular filling, specifically left ventricular twisting. The concept of ventricular function must be always considered, although it may not be always possible to distinguish the normal heart of sedentary individuals from that of highly trained hearts based solely on echocardiographic or basic studies.
Resumo:
To determine whether the heart rate (HR) response to exercise in 21 highly trained cyclists (mean (SD) age 25 (3) years) was related to their heart dimensions. Methods—Before performing an incremental exercise test involving a ramp protocol with workload increases of 25 W/min, each subject underwent echocardiographic evaluation of the following variables: left ventricular end diastolic internal diameter (LVIDd), left ventricular posterior wall thickness at end diastole (LVPWTd), interventricular septal wall thickness at end diastole (IVSTd), left ventricular mass index (LVMI), left atrial dimension (LAD), longitudinal left atrial (LLAD) and right atrial (LRAD) dimensions, and the ratio of early to late (E/A) diastolic flow velocity. Results—The HR response showed a de- flection point (HRd) at about 85% V~ O2MAX in 66.7% of subjects (D group; n = 14) and was linear in 33.3% (NoD group; n = 7). Several echocardiographic variables (LVMI, LAD, LLAD, LRAD) indicative of heart dimensions were similar in each group. However, mean LPWTd (p<0.01) and IVSTd (p<0.05) values were signifi- cantly higher in the D group. Finally, no significant diVerence between groups was found with respect to the E/A. The HR response is curvilinear during incremental exercise in a considerable number of highly trained endurance athletes—that is, top level cyclists. The departure of HR increase from linearity may predominantly occur in athletes with thicker heart walls.
Resumo:
Percutaneous left atrial appendage (LAA) closure represents a complementary option and effective treatment for patients at risk of thromboembolism, especially in patients for whom it may be difficult to achieve satisfactory anticoagulation control or where anticoagulation treatment is not possible or desirable. Effective and safe transcatheter LAA occlusion requires a detailed knowledge of crucial anatomic landmarks and endocardial morphologic variants of the LAA and its neighbouring structures.1 ,2 w1–w3 Our aim in this article is to provide the basic anatomic information that is important for the interventional cardiologist to know when planning an LAA occlusion procedure.