4 resultados para Inherited Renal Disease
em ABACUS. Repositorio de Producción Científica - Universidad Europea
Resumo:
Vitamin K antagonists (VKAs) are still largely employed, even in nonvalvular atrial fibrillation (AF). Our aim was to study the clinical profile of octogenarians treated with oral anticoagulation and to study the effect of age on the quality of VKAs anticoagulation. Data are from a prospective national registry in an adult Spanish population of nonvalvular AF. We included 1637 patients who had been receiving VKAs for at least 6 months before enrolment. Mean age was 73.8 ± 9.4 years. Patients aged > 80 years (N = 429) had a high risk profile with higher risk of stroke and bleeding than younger patients; CHA2DS2-VASc (Cardiac failure, Hypertension, Age > 74, Diabetes, Stroke, Vascular disease, Age 65–74 years, and Sex category) 4.5 ± 1.3 vs. 3.5 ± 1.6, p < 0.001, HAS-BLED (Hypertension, Abnormal renal/liver function, Stroke, Bleeding history or predisposition, Labile international normalized ratio, Elderly (> 64 years), Drugs/alcohol concomitantly) 2.4 ± 0.9 vs. 1.9 ± 1.1, p < 0.001. Creatinine clearance was lower in octogenarians than in younger patients (54.3 ± 16.1 ml/min vs. 69.5 ± 23.7 ml/min, p < 0.001) and severe renal disease with creatinine clearance < 30 ml/min was more frequent in octogenarians (5.2% vs. 2.2%, p < 0.001). In patients treated with VKAs (N = 1637), the international normalized ratio values of the 6 months previous to enrollment were similar in all age quartiles, as was the time in the therapeutic range. In this large registry octogenarians with nonvalvular AF had high risk of stroke and bleeding and frequent renal disease. VKAs anticoagulation quality was similar in octogenarians and in younger patients.
Resumo:
McArdle disease is arguably the paradigm of exercise intolerance in humans. This disorder is caused by inherited deficiency of myophosphorylase, the enzyme isoform that initiates glycogen breakdown in skeletal muscles. Because patients are unable to obtain energy from their muscle glycogen stores, this disease provides an interesting model of study for exercise physiologists, allowing insight to be gained into the understanding of glycogen-dependent muscle functions. Of special interest in the field of muscle physiology and sports medicine are also some specific (if not unique) characteristics of this disorder, such as the so-called 'second wind' phenomenon, the frequent exercise-induced rhabdomyolysis and myoglobinuria episodes suffered by patients (with muscle damage also occurring under basal conditions), or the early appearance of fatigue and contractures, among others. In this article we review the main pathophysiological features of this disorder leading to exercise intolerance as well as the currently available therapeutic possibilities.
Resumo:
The intent of this review is to summarize current body of knowledge on the potential implication of the xanthine oxidase pathway (XO) on skeletal muscle damage. The possible involvement of the XO pathway in muscle damage is exemplified by the role of XO inhibitors (e.g., allopurinol) in attenuating muscle damage. Reliance on this pathway (as well as on the purine nucleotide cycle) could be exacerbated in conditions of low muscle glycogen availability. Thus, we also summarize current hypotheses on the etiology of both baseline and exertional muscle damage in McArdle disease, a condition caused by inherited deficiency of myophosphorylase. Because myophosphorylase catalyzes the first step of muscle glycogen breakdown, patients are unable to obtain energy from their muscle glycogen stores. Finally, we provide preliminary data from our laboratory on the potential implication of the XO pathway in the muscle damage that is commonly experienced by these patients.
Resumo:
McArdle disease is an autosomal recessive disorder caused by inherited deficiency of the muscle isoform of glycogen phosphorylase (or ‘myophosphorylase´), which catalyzes the first step of glycogen catabolism, releasing glucose-1-phosphate from glycogen deposits. As a result, muscle metabolism is impaired, leading to different degrees of exercise intolerance. Patients range from asymptomatic to severely affected, including in some cases limitations in activities of daily living. The PYGM gene codifies myophosphoylase and to date 147 pathogenic mutations and 39 polymorphisms have been reported. Exon 1 and 17 are mutational hot-spots in PYGM and 50% of the described mutations are missense.