2 resultados para EPILEPSIA
em ABACUS. Repositorio de Producción Científica - Universidad Europea
Resumo:
Recent reports in human demonstrate a role of theta– gamma coupling in memory for spatial episodes and a lack of coupling in people experiencing temporal lobe epilepsy, but the mechanisms are unknown. Using multisite silicon probe recordings of epileptic rats engaged in episodic-like object recognition tasks, we sought to evaluate the role of theta– gamma coupling in the absence of epileptiform activities. Our data reveal a specific association between theta– gamma (30 – 60 Hz) coupling at the proximal stratum radiatum of CA1 and spatial memory deficits. We targeted the microcircuit mechanisms with a novel approach to identify putative interneuronal types in tetrode recordings (parvalbumin basket cells in particular) and validated classification criteria in the epileptic context with neurochemical identification of intracellularly recorded cells. In epileptic rats, putative parvalbumin basket cells fired poorly modulated at the falling theta phase, consistent with weaker inputs from Schaffer collaterals and attenuated gamma oscillations, as evaluated by theta-phase decomposition of current–source density signals. We propose that theta– gamma interneuronal rhythmopathies of the temporal lobe are intimately related to episodic memory dysfunction in this condition.
Resumo:
Because GABA (gamma-aminobutyric acid) receptor-mediated inhibition controls the excitability of principal neurons in the brain, deficits in GABAergic inhibition have long been favored to explain seizures. In an experimental model of temporal lobe epilepsy, we have identified a deficit of inhibition in presynaptic GABAergic terminals characterized by decreased GABA quantal activity associated with reduced synaptic vesicle density. This decrease in vesicle number primarily seems to affect the reserve pool, rather than the docked or the readily releasable pool.