3 resultados para Cardiogenic shock
em ABACUS. Repositorio de Producción Científica - Universidad Europea
Resumo:
Cardiogenic shock (CS) has a poor prognosis. The heterogeneity in the mortality through different subgroups suggests that some factors can be useful to perform risk stratification and guide management. We aimed to find predictors of in-hospital mortality in these patients. We analyzed all cases of cardiogenic shock due to medical conditions admitted in our intensive acute cardiovascular care unity from November 2010 till November 2015. Clinical, biochemical and hemodynamic variables were registered, as was the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) profile at 24 h of CS diagnosis. From a total of 281 patients, 28 died within the first 24 h and were not included in the analysis. A total of 253 patients survived the first 24 h, mean age was 68.8 ± 14.4 years, and 174 (68.8%) were men. Etiologies: acute coronary syndrome 146 (57.7%), acute heart failure 60 (23.7%), arrhythmias 35 (13.8%), and others 12 (4.8%). A total of 91 patients (36.0%) died during hospitalization. We found the following independent predictors of in-hospital mortality: age (odds ratio [OR] 1.032, 95% confidence interval [CI] 1.003–1.062), blood glucose (OR 1.004, 95% CI 1.001–1.008), heart rate (OR 1.014, 95% CI 1.001–1.028), and INTERMACS profile (OR 0.168, 95% CI 0.107–0.266). In patients with CS the INTERMACS profile at 24 h of diagnosis was associated with higher in-hospital mortality. This and other prognostic variables (age, blood glucose, and heart rate) may be useful for risk stratification and to select appropriate medical or invasive interventions.
Resumo:
The impact of intravenous (IV) beta-blockers before primary percutaneous coronary intervention (PPCI) on infarct size and clinical outcomes is not well established. This study sought to conduct the first double-blind, placebo-controlled international multicenter study testing the effect of early IV beta-blockers before PPCI in a general ST-segment elevation myocardial infarction (STEMI) population. STEMI patients presenting <12 h from symptom onset in Killip class I to II without atrioventricular block were randomized 1:1 to IV metoprolol (2 × 5-mg bolus) or matched placebo before PPCI. Primary endpoint was myocardial infarct size as assessed by cardiac magnetic resonance imaging (CMR) at 30 days. Secondary endpoints were enzymatic infarct size and incidence of ventricular arrhythmias. Safety endpoints included symptomatic bradycardia, symptomatic hypotension, and cardiogenic shock. A total of 683 patients (mean age 62 ± 12 years; 75% male) were randomized to metoprolol (n = 336) or placebo (n = 346). CMR was performed in 342 patients (54.8%). Infarct size (percent of left ventricle [LV]) by CMR did not differ between the metoprolol (15.3 ± 11.0%) and placebo groups (14.9 ± 11.5%; p = 0.616). Peak and area under the creatine kinase curve did not differ between both groups. LV ejection fraction by CMR was 51.0 ± 10.9% in the metoprolol group and 51.6 ± 10.8% in the placebo group (p = 0.68). The incidence of malignant arrhythmias was 3.6% in the metoprolol group versus 6.9% in placebo (p = 0.050). The incidence of adverse events was not different between groups. In a nonrestricted STEMI population, early intravenous metoprolol before PPCI was not associated with a reduction in infarct size. Metoprolol reduced the incidence of malignant arrhythmias in the acute phase and was not associated with an increase in adverse events.
Resumo:
We seek to examine the efficacy and safety of prereperfusion emergency medical services (EMS)–administered intravenous metoprolol in anterior ST-segment elevation myocardial infarction patients undergoing eventual primary angioplasty. This is a prespecified subgroup analysis of the Effect of Metoprolol in Cardioprotection During an Acute Myocardial Infarction trial population, who all eventually received oral metoprolol within 12 to 24 hours. We studied patients receiving intravenous metoprolol by EMS and compared them with others treated by EMS but not receiving intravenous metoprolol. Outcomes included infarct size and left ventricular ejection fraction on cardiac magnetic resonance imaging at 1 week, and safety by measuring the incidence of the predefined combined endpoint (composite of death, malignant ventricular arrhythmias, advanced atrioventricular block, cardiogenic shock, or reinfarction) within the first 24 hours. From the total population of the trial (N=270), 147 patients (54%) were recruited during out-of-hospital assistance and transferred to the primary angioplasty center (74 intravenous metoprolol and 73 controls). Infarct size was smaller in patients receiving intravenous metoprolol compared with controls (23.4 [SD 15.0] versus 34.0 [SD 23.7] g; adjusted difference –11.4; 95% confidence interval [CI] –18.6 to –4.3). Left ventricular ejection fraction was higher in the intravenous metoprolol group (48.1% [SD 8.4%] versus 43.1% [SD 10.2%]; adjusted difference 5.0; 95% CI 1.6 to 8.4). Metoprolol administration did not increase the incidence of the prespecified safety combined endpoint: 6.8% versus 17.8% in controls (risk difference –11.1; 95% CI –21.5 to –0.6). Out-of-hospital administration of intravenous metoprolol by EMS within 4.5 hours of symptom onset in our subjects reduced infarct size and improved left ventricular ejection fraction with no excess of adverse events during the first 24 hours.