2 resultados para Adrenal cortex neoplasms
em ABACUS. Repositorio de Producción Científica - Universidad Europea
Resumo:
In situ hybridization histochemistry and immunocytochemistry were used to examine lamina- and cell-specific expression of glutamate receptor (GluR) mRNAs and polypeptide subunits in motor and somatosensory cortex of macaque monkeys. Radioactive complementary RNA (cRNA) probes were prepared from cDNAs specific for α-amino-3-hydroxy-5-methylisoxozolepropionate (AMPA)/kainate (GluR1-GluR4), kainate (GluR5-GluR7), and N-methylD-aspartate (NMDA; NR1, NR2A-NR2D) receptor subunits. AMPA/kainate and NR1, NR2A, and NR2B receptor transcripts show higher expression than other transcripts. All transcripts show lamina-specific patterns of distribution. GluR2 and GluR4 mRNAs show higher expression than do GluR1 and GluR3 mRNAs. GluR6 transcript expression is higher than that of GluR5 and GluR7. NR1 mRNA expression is much higher than that of NR2 mRNAs. NR2C subunit expression is very low except for a very distinct band of high expression in layer IV of area 3b. Immunocytochemistry, using subunit-specific antisera and double labeling for calbindin, parvalbumin, or α type II Ca2+/calmodulin-dependent protein kinase (CaMKII-α), allowed identification of cell types expressing different subunit genes. GluR1 and GluR5/6/7 immunoreactivity is found in both pyramidal cells and gamma-amino butyric acid (GABA) cells; GluR2/3 immunoreactivity is preferentially found in pyramidal cells, whereas GluR4 immunoreactivity is largely restricted to GABA cells; NMDA receptor subunit immunoreactivity is far greater in excitatory cells than in GABA cells. The density of expression of AMPA/kainate, kainate, and NMDA receptor subunit mRNAs differed within and across the architectonic fields of sensory-motor cortex. This finding and the lamina- and cell-specific patterns of expression suggest assembly of functional receptors from different arrangements of available subunits in specific neuronal populations.
Resumo:
Expression patterns of group I (mGluR1α and mGluR5)and group II (mGluR2/3) metabotropic glutamate receptor subtypes were examined immunocytochemically in the trigeminal system of mice during the first 3 weeks of postnatal development, when somatotopic whisker representations are sequentially established from brainstem through thalamus to cerebral cortex. Immunostaining for all three epitopes formed whisker-related patterns in the trigeminal nuclei from postnatal day (P) 0, in the ventral posterior thalamic nucleus from P2, and in the posteromedial barrel subfield of somatosensory cortex (SI) from P4. The appearance of whisker-related patterns was preceded by increased levels of immunostaining of the neuropil, which subsequently declined from the trigeminal nuclei upward. In SI, mGluR1α-positive neurons were observed in all cortical layers from P2. mGluR5 was localized in neurons, glial cells, and neuropil from P2. mGluR2/3 immunostaining was distributed only in the neuropil at all ages. The three receptor subtypes showed moderate to high expression in deep layer V throughout development. Transient expression peaked in the hollows of layer IV barrels from P4 to P9, and then fell off as expression increased in supragranular layers from P14 to P21. The deep aspect of the cortical subplate (layer VIb) showed dense mGluR5 and less dense mGluR1α immunostaining throughout development. Up-regulation of expression of group I and II mGluRs is correlated with the growth and refinement of connectivity and the establishment of somatotopic patterns in the three main relay stations of the trigeminal system. This finding suggests roles for mGluRs in the early processing of sensory information and in developmental plasticity.