2 resultados para Dopamine transporter

em University of Cagliari UniCA Eprints


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Parkinson‟s disease (PD) is characterized by a chronic progressive loss of nigrostriatal dopaminergic neurons that is associated with chronic neuroinflammation. Current treatments for PD can significantly improve symptoms but do not cure the disease or slow its progression. An approach used in existing therapies is based on the inhibition of monoamine oxidase (MAO), enzyme involved in the metabolic degradation of dopamine. Although, preclinical studies showed that MAO-B inhibitors have neuroprotective activity in cellular and animal models of PD, clinical trials did not completely confirm this result. Therefore a large number of new molecules, with more potent MAO-B inhibitory activity and a possible neuroprotective effect, have been proposed to replace the pre-existing MAO-B inhibitors. The profile of the recent MAO inhibitor, SZV558, appears to be particularly interesting because of its pharmacodynamic, favorable for disease-modifying properties and its irreversible MAO-B enzyme bind. The enhancement of adult neurogenesis could be of great clinical interest in the management of neurodegenerative disorders. In line with this, the metformin, a well-known antidiabetic drug, has recently been proposed to promote neurogenesis and to have a neuroprotective effect on the neurodegenerative processes induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in a mice PD model. Although, PD has multiple origins, one hypothesis is that amphetamine-related drugs may be part of the wide array of factors leading to the dopaminergic neuron degeneration that causes the disease. These hypothesis are supported by different results that showed a persistent, long-term dopaminergic toxicity induced by 3,4-methylenedioxymethamphetamine (MDMA) in mice. Moreover, the MDMA, altering the dopaminergic transmission, may affect neurogenesis and synaptogenesis. On these basis, considering that the young brain is particularly sensitive to drug-induced neurotoxicity, the consumption of MDMA during the adolescence might increase the vulnerability of dopaminergic neurons. However, the use of amphetamine-related drugs by adolescent and young people is often combined with caffeinated energy drinks in order to amplify their stimulant actions. Although caffeine use is safe, the combined treatment of caffeine and MDMA increases not only the DA release but also the microglia and astroglia activation. Aims: During my Ph.D. I studied the influence of neuroprotective drugs, such as MAO inhibitors and metformin, or substances, such as caffeine, on the neurodegenerative effects of two dopaminergic toxins, MDMA and MPTP, in mice. 1. In the first phase of my study, I evaluated the neuroprotective activity of the new MAO-B inhibitor SZV558, compared with well-known rasagiline, in a chronic mouse model of MPTP plus probenecid (MPTPp), which induces a progressive loss of nigrostriatal dopaminergic neurons. 2. Previous results showed that when MDMA is associated with caffeine, a more pronounced degeneration in adolescent compared with adult mice was observed. To better clarify the molecular mechanism at the base of the different neurotoxic effect of this drug association at different ages, I evaluated the neuronal nitric oxide synthase (nNOS) expression, which plays a critical role in the integration of dopaminergic and glutamatergic transmissions, in the CPu of adolescent or adult mice treated with MDMA, alone or in combination with caffeine. 3. Finally, I investigated the neuroprotective effect of metformin against dopaminergic neurotoxicity induced by MDMA in the CPu and SNc of adult mice. Conclusions: These results demonstrated that the dopaminergic neurodegenerative process may be induced or conditioned by environment stressors or substances which influence, through different ways, the development of neurodegenerative mechanisms. In the present study I evaluated the effects of 3 substances, known as potentially neuroprotective, in combination with two different neurotoxins that affect the nigrostriatal dopaminergic system. The SZV558 MAO-B inhibitor and the metformin protected the nigrostriatal pathway, usually affected in PD, by MPTP- and MDMA- induced neurotoxicity, respectively. On the other hand, caffeine, administrated with MDMA, showed a neurotoxic potential depending on the age of consumers, confirming the vulnerability of adolescent brain to consumption of drug and substances that affected the dopaminergic system. In conclusion, the study of neurodegenerative processes may be relevant to understand the human pharmacology, the origin and development of neurodegenerative disease and to predict the neurotoxic effect of drug abuse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The putative 5-HT6 receptor agonist ST1936 has been shown to increase extracellular dopamine (DA) in the n.accumbens (NAc) Shell and in the medial prefrontal cortex (PFCX). These observations suggest that 5-HT6 receptors modulate DA transmission in mesolimbic and mesocortical terminal DA areas. To investigate the behavioral counterpart of this interaction I studied in rats the effect of 5-HT6 receptor blockade on cocaine stimulated overflow of DA in dialysates from the PFCX and from the NAc Shell and on cocaine i.v. selfadministration. Pretreatment with the 5-HT6 antagonist SB271046 reduced cocaine-induced increase of dialysate DA in the NAc Shell but not in the PFCX and impaired i.v. cocaine selfadministration. These suggest that 5-HT6 receptors play a role in cocaine reinforcement via their facilitatore interaction with DA projections to the NAc Shell. This 5-HT/DA interaction might provide the basis for a new pharmacotherapeutic strategy of cocaine addiction. Caffeine is one of the psychoactive substances most widely used as adulterant in illicit drugs, such as cocaine. Animal studies have demonstrated that caffeine is able to potentiate cocaine actions, although the enhancement of the cocaine reinforcing property by caffeine is less reported, and the results depend on the paradigms and experimental protocols used. In the present study I examined the ability of caffeine to enhance the motivational and rewarding properties of cocaine using the intravenous self-administration paradigm in rats. Additionally, the role of caffeine as a primer cue during extinction was evaluated. To this end, we assessed in naïve rats: 1) the ability of the combination of cocaine (0,125 mg/kg/infusion) and caffeine (0,0625 mg/kg/infusion) to maintain self-administration in fixed ratio (FR) and progressive ratio (PR) schedules of reinforcement compared with cocaine and caffeine alone; 2) the effect of caffeine in the maintenance of responding in the animals exposed to the combination of the drugs during cocaine extinction. Cocaine and the combination of cocaine and caffeine were self-administered on a FR and PR schedules of reinforcement, and the responding for the combination of the drugs was higher than cocaine alone. Caffeine was not reliably self-administered, but was able to maintain a drug-seeking behavior in rats previously exposed to cocaine plus caffeine. These findings suggest that the presence of caffeine enhances the reinforcing effects of cocaine and the motivational value of the drug. Our results highlight the role of active adulterants commonly used in illicit street drugs.