2 resultados para Dipl.-Ing. Axel Schönknecht

em University of Cagliari UniCA Eprints


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malicious software (malware) have significantly increased in terms of number and effectiveness during the past years. Until 2006, such software were mostly used to disrupt network infrastructures or to show coders’ skills. Nowadays, malware constitute a very important source of economical profit, and are very difficult to detect. Thousands of novel variants are released every day, and modern obfuscation techniques are used to ensure that signature-based anti-malware systems are not able to detect such threats. This tendency has also appeared on mobile devices, with Android being the most targeted platform. To counteract this phenomenon, a lot of approaches have been developed by the scientific community that attempt to increase the resilience of anti-malware systems. Most of these approaches rely on machine learning, and have become very popular also in commercial applications. However, attackers are now knowledgeable about these systems, and have started preparing their countermeasures. This has lead to an arms race between attackers and developers. Novel systems are progressively built to tackle the attacks that get more and more sophisticated. For this reason, a necessity grows for the developers to anticipate the attackers’ moves. This means that defense systems should be built proactively, i.e., by introducing some security design principles in their development. The main goal of this work is showing that such proactive approach can be employed on a number of case studies. To do so, I adopted a global methodology that can be divided in two steps. First, understanding what are the vulnerabilities of current state-of-the-art systems (this anticipates the attacker’s moves). Then, developing novel systems that are robust to these attacks, or suggesting research guidelines with which current systems can be improved. This work presents two main case studies, concerning the detection of PDF and Android malware. The idea is showing that a proactive approach can be applied both on the X86 and mobile world. The contributions provided on this two case studies are multifolded. With respect to PDF files, I first develop novel attacks that can empirically and optimally evade current state-of-the-art detectors. Then, I propose possible solutions with which it is possible to increase the robustness of such detectors against known and novel attacks. With respect to the Android case study, I first show how current signature-based tools and academically developed systems are weak against empirical obfuscation attacks, which can be easily employed without particular knowledge of the targeted systems. Then, I examine a possible strategy to build a machine learning detector that is robust against both empirical obfuscation and optimal attacks. Finally, I will show how proactive approaches can be also employed to develop systems that are not aimed at detecting malware, such as mobile fingerprinting systems. In particular, I propose a methodology to build a powerful mobile fingerprinting system, and examine possible attacks with which users might be able to evade it, thus preserving their privacy. To provide the aforementioned contributions, I co-developed (with the cooperation of the researchers at PRALab and Ruhr-Universität Bochum) various systems: a library to perform optimal attacks against machine learning systems (AdversariaLib), a framework for automatically obfuscating Android applications, a system to the robust detection of Javascript malware inside PDF files (LuxOR), a robust machine learning system to the detection of Android malware, and a system to fingerprint mobile devices. I also contributed to develop Android PRAGuard, a dataset containing a lot of empirical obfuscation attacks against the Android platform. Finally, I entirely developed Slayer NEO, an evolution of a previous system to the detection of PDF malware. The results attained by using the aforementioned tools show that it is possible to proactively build systems that predict possible evasion attacks. This suggests that a proactive approach is crucial to build systems that provide concrete security against general and evasion attacks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The identification of subject-specific traits extracted from patterns of brain activity still represents an important challenge. The need to detect distinctive brain features, which is relevant for biometric and brain computer interface systems, has been also emphasized in monitoring the effect of clinical treatments and in evaluating the progression of brain disorders. Graph theory and network science tools have revealed fundamental mechanisms of functional brain organization in resting-state M/EEG analysis. Nevertheless, it is still not clearly understood how several methodological aspects may bias the topology of the reconstructed functional networks. In this context, the literature shows inconsistency in the chosen length of the selected epochs, impeding a meaningful comparison between results from different studies. In this study we propose an approach which aims to investigate the existence of a distinctive functional core (sub-network) using an unbiased reconstruction of network topology. Brain signals from a public and freely available EEG dataset were analyzed using a phase synchronization based measure, minimum spanning tree and k-core decomposition. The analysis was performed for each classical brain rhythm separately. Furthermore, we aim to provide a network approach insensitive to the effects that epoch length has on functional connectivity (FC) and network reconstruction. Two different measures, the phase lag index (PLI) and the Amplitude Envelope Correlation (AEC), were applied to EEG resting-state recordings for a group of eighteen healthy volunteers. Weighted clustering coefficient (CCw), weighted characteristic path length (Lw) and minimum spanning tree (MST) parameters were computed to evaluate the network topology. The analysis was performed on both scalp and source-space data. Results about distinctive functional core, show highest classification rates from k-core decomposition in gamma (EER=0.130, AUC=0.943) and high beta (EER=0.172, AUC=0.905) frequency bands. Results from scalp analysis concerning the influence of epoch length, show a decrease in both mean PLI and AEC values with an increase in epoch length, with a tendency to stabilize at a length of 12 seconds for PLI and 6 seconds for AEC. Moreover, CCw and Lw show very similar behaviour, with metrics based on AEC more reliable in terms of stability. In general, MST parameters stabilize at short epoch lengths, particularly for MSTs based on PLI (1-6 seconds versus 4-8 seconds for AEC). At the source-level the results were even more reliable, with stability already at 1 second duration for PLI-based MSTs. Our results confirm that EEG analysis may represent an effective tool to identify subject-specific characteristics that may be of great impact for several bioengineering applications. Regarding epoch length, the present work suggests that both PLI and AEC depend on epoch length and that this has an impact on the reconstructed network topology, particularly at the scalp-level. Source-level MST topology is less sensitive to differences in epoch length, therefore enabling the comparison of brain network topology between different studies.