1 resultado para visual analytics
em Repository Napier
Filtro por publicador
- JISC Information Environment Repository (1)
- Repository Napier (1)
- Aberystwyth University Repository - Reino Unido (2)
- Aquatic Commons (11)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (11)
- Aston University Research Archive (3)
- Biblioteca Digital da Câmara dos Deputados (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (6)
- Boston University Digital Common (25)
- Brock University, Canada (14)
- CaltechTHESIS (5)
- Cámara de Comercio de Bogotá, Colombia (8)
- Cambridge University Engineering Department Publications Database (123)
- CentAUR: Central Archive University of Reading - UK (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (26)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (1)
- Digital Commons - Michigan Tech (1)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (21)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (21)
- Indian Institute of Science - Bangalore - Índia (17)
- Infoteca EMBRAPA (2)
- Instituto Politécnico do Porto, Portugal (8)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (24)
- Ministerio de Cultura, Spain (11)
- Open University Netherlands (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (192)
- Queensland University of Technology - ePrints Archive (330)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (2)
- Research Open Access Repository of the University of East London. (4)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (12)
- SAPIENTIA - Universidade do Algarve - Portugal (7)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Universidad Autónoma de Nuevo León, Mexico (7)
- Universidade de Lisboa - Repositório Aberto (9)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (7)
- Université de Montréal, Canada (10)
- University of Southampton, United Kingdom (1)
- University of Washington (3)
- WestminsterResearch - UK (6)
Resumo:
Rigid adherence to pre-specified thresholds and static graphical representations can lead to incorrect decisions on merging of clusters. As an alternative to existing automated or semi-automated methods, we developed a visual analytics approach for performing hierarchical clustering analysis of short time-series gene expression data. Dynamic sliders control parameters such as the similarity threshold at which clusters are merged and the level of relative intra-cluster distinctiveness, which can be used to identify "weak-edges" within clusters. An expert user can drill down to further explore the dendrogram and detect nested clusters and outliers. This is done by using the sliders and by pointing and clicking on the representation to cut the branches of the tree in multiple-heights. A prototype of this tool has been developed in collaboration with a small group of biologists for analysing their own datasets. Initial feedback on the tool has been positive.