2 resultados para nadp( )-dependent isocitrate dehydrogenase

em Repository Napier


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vehicle navigation problem studied in Bell (2009) is revisited and a time-dependent reverse Hyperstar algorithm is presented. This minimises the expected time of arrival at the destination, and all intermediate nodes, where expectation is based on a pessimistic (or risk-averse) view of unknown link delays. This may also be regarded as a hyperpath version of the Chabini and Lan (2002) algorithm, which itself is a time-dependent A* algorithm. Links are assigned undelayed travel times and maximum delays, both of which are potentially functions of the time of arrival at the respective link. The driver seeks probabilities for link use that minimise his/her maximum exposure to delay on the approach to each node, leading to the determination of the pessimistic expected time of arrival. Since the context considered is vehicle navigation where the driver is not making repeated trips, the probability of link use may be interpreted as a measure of link attractiveness, so a link with a zero probability of use is unattractive while a link with a probability of use equal to one will have no attractive alternatives. A solution algorithm is presented and proven to solve the problem provided the node potentials are feasible and a FIFO condition applies for undelayed link travel times. The paper concludes with a numerical example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assays on "ex vivo" sections of rat hippocampus and rat cerebral cortex, subjected to oxygen and glucose deprivation (OGD) and a three-hour reperfusion-like (RL) recovery, were performed in the presence of either GABA or the GABA(A) receptor binding site antagonist, bicuculline. Lactate dehydrogenase (LDH) and propidium iodide were used to quantify cell mortality. We also measured, using real-time quantitative polymerase chain reaction (qPCR), the early transcriptional response of a number of genes of the glutamatergic and GABAergic systems. Specifically, glial pre- and post-synaptic glutamatergic transporters (namely GLAST1a, EAAC-1, GLT-1 and VGLUT1), three GABAA receptor subunits (α1, β2 and γ2), and the GABAergic presynaptic marker, glutamic acid decarboxylase (GAD65), were studied. Mortality assays revealed that GABAA receptor chloride channels play an important role in the neuroprotective effect of GABA in the cerebral cortex, but have a much smaller effect in the hippocampus. We also found that GABA reverses the OGD-dependent decrease in GABA(A) receptor transcript levels, as well as mRNA levels of the membrane and vesicular glutamate transporter genes. Based on the markers used, we conclude that OGD results in differential responses in the GABAergic presynaptic and postsynaptic systems.