1 resultado para fuzzy linear system
em Repository Napier
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Aston University Research Archive (8)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (57)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (4)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (14)
- CentAUR: Central Archive University of Reading - UK (77)
- Cochin University of Science & Technology (CUSAT), India (13)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (19)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (8)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (26)
- DRUM (Digital Repository at the University of Maryland) (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (35)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (11)
- Massachusetts Institute of Technology (4)
- Nottingham eTheses (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (16)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (299)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (11)
- Scielo Saúde Pública - SP (33)
- Scielo Uruguai (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (18)
- Universidade do Minho (5)
- Universidade Federal do Pará (24)
- Universidade Federal do Rio Grande do Norte (UFRN) (27)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (17)
- Université de Montréal, Canada (4)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (3)
- University of Queensland eSpace - Australia (18)
- University of Southampton, United Kingdom (1)
Resumo:
By proposing a numerical based method on PCA-ANFIS(Adaptive Neuro-Fuzzy Inference System), this paper is focusing on solving the problem of uncertain cycle of water injection in the oilfield. As the dimension of original data is reduced by PCA, ANFIS can be applied for training and testing the new data proposed by this paper. The correctness of PCA-ANFIS models are verified by the injection statistics data collected from 116 wells inside an oilfield, the average absolute error of testing is 1.80 months. With comparison by non-PCA based models which average error is 4.33 months largely ahead of PCA-ANFIS based models, it shows that the testing accuracy has been greatly enhanced by our approach. With the conclusion of the above testing, the PCA-ANFIS method is robust in predicting the effectiveness cycle of water injection which helps oilfield developers to design the water injection scheme.