3 resultados para cohesive strength

em Repository Napier


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Offshore wind turbines supported on monopile foundations are dynamically sensitive because the overall natural frequencies of these structures are close to the different forcing frequencies imposed upon them. The structures are designed for an intended life of 25 to 30 years, but little is known about their long term behaviour. To study their long term behaviour, a series of laboratory tests were conducted in which a scaled model wind turbine supported on a monopile in kaolin clay was subjected to between 32,000 and 172,000 cycles of horizontal loading and the changes in natural frequency and damping of the model were monitored. The experimental results are presented using a non-dimensional framework based on an interpretation of the governing mechanics. The change in natural frequency was found to be strongly dependent on the shear strain level in the soil next to the pile. Practical guidance for choosing the diameter of monopile is suggested based on element test results using the concept of volumetric threshold shear strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presentations from the seminar on timber grading. "This grading seminar will give you a crash course in timber strength grading, what it is, how it works, and how it is changing. It aims to demystify timber grading, tackle some widely held misconceptions, and tell you the things you need to be aware of to improve profitability, and remain correct and safe in what you do. The timber resource in the UK is changing, technology is advancing, and standards are being modified. This seminar will bring you the latest position, informed by CEN and BSI standards committee work and research conducted by the SIRT network."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is a concise explanation of the normative background to strength grading in Europe, addressing important aspects that are commonly misunderstood by structural engineers and timber researchers. It also highlights changes that are being made to the standards to: incorporate requirements of the construction products regulations; add improvements to the system to accommodate the latest knowledge and technology; and widen the application of the standards. Where designs need to be optimised, there is an opportunity to use the system more intelligently, in combination with the latest technology, to better fit design values to the true properties of the timber resource. This can bring a design enhancement equivalent to effort improving other aspects of the structure, such as connectors and reinforcement. Parallel to this, researchers working on other aspects of structural improvement need to understand what grades really mean in respect of the properties of the timber, in order to correctly analyse the results of testing. It is also useful to know how techniques used in grading can assist with material properties characterisation for research. The amount of destructive testing involved in establishing machine grading settings and visual grading assignments presents a barrier to greater use of local timber, and diversification of commercial species, so it is important that any researcher assessing the properties of such species should consider, from the outset, doing the research in a way that can contribute to a grading dataset at a later date. This paper provides an overview of what is required for this.