2 resultados para antiphospholipid syndrome
em Repository Napier
Resumo:
In the current study, we have developed a magnetic resonance imaging-based method for non-invasive detection of complement activation in placenta and foetal brain in vivo in utero. Using this method, we found that anti-complement C3-targeted ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles bind within the inflamed placenta and foetal brain cortical tissue, causing a shortening of the T2* relaxation time. We used two mouse models of pregnancy complications: a mouse model of obstetrics antiphospholipid syndrome (APS) and a mouse model of preterm birth (PTB). We found that detection of C3 deposition in the placenta in the APS model was associated with placental insufficiency characterised by increased oxidative stress, decreased vascular endothelial growth factor and placental growth factor levels and intrauterine growth restriction. We also found that foetal brain C3 deposition was associated with cortical axonal cytoarchitecture disruption and increased neurodegeneration in the mouse model of APS and in the PTB model. In the APS model, foetuses that showed increased C3 in their brains additionally expressed anxiety-related behaviour after birth. Importantly, USPIO did not affect pregnancy outcomes and liver function in the mother and the offspring, suggesting that this method may be useful for detecting complement activation in vivo in utero and predicting placental insufficiency and abnormal foetal neurodevelopment that leads to neuropsychiatric disorders.
Resumo:
Polycystic Ovary Syndrome (PCOS) is a complex disorder encompassing reproductive and metabolic dysfunction. Ovarian hyperandrogenism is an endocrine hallmark of human PCOS. In animal models, PCOS-like abnormalities can be recreated by in utero over-exposure to androgenic steroid hormones. This thesis investigated pancreatic and adrenal development and function in a unique model of PCOS. Fetal sheep were directly exposed (day 62 and day 82 of gestation) to steroidal excesses - androgen excess (testosterone propionate - TP), estrogen excess (diethylstilbestrol - DES) or glucocorticoid excess (dexamethasone - DEX). At d90 gestation there was elevated expression of genes involved in β- cell development and function: PDX-1 (P<0.001), and INS (P<0.05), INSR (P<0.05) driven by androgenic excess only in the female fetal pancreas. β- cell numbers (P<0.001) and in vitro insulin secretion (P<0.05) were also elevated in androgen exposed female fetuses. There was a significant increase in insulin secreting β-cell numbers (P<0.001) and in vivo insulin secretion (glucose stimulated) (P<0.01) in adult female offspring, specifically associated with prenatal androgen excess. At d90 gestation, female fetal adrenal gene expression was perturbed by fetal estrogenic exposure. Male fetal adrenal gene expression was altered more dramatically by fetal glucocorticoid exposure. In female adult offspring from androgen exposed pregnancies there was increased adrenal steroidogenic gene expression and in vivo testosterone secretion (P<0.01). This highlights that the adrenal glands may contribute towards excess androgen secretion in PCOS, but such effects might be secondary to other metabolic alterations driven by prenatal androgen exposure, such as excess insulin secretion Thus there may be dialogue between the pancreas and adrenal gland, programmed during early life, with implications for adult health Given both hyperinsulinaemia and hyperandrogenism are common features in PCOS, we suggest that their origins may be at least partially due to altered fetal steroidal environments, specifically excess androgenic stimulation