2 resultados para WWII Posters
em Repository Napier
Resumo:
A collaboration between dot.rural at the University of Aberdeen and the iSchool at Northumbria University, POWkist is a pilot-study exploring potential usages of currently available linked datasets within the cultural heritage domain. Many privately-held family history collections (shoebox archives) remain vulnerable unless a sustainable, affordable and accessible model of citizen-archivist digital preservation can be offered. Citizen-historians have used the web as a platform to preserve cultural heritage, however with no accessible or sustainable model these digital footprints have been ad hoc and rarely connected to broader historical research. Similarly, current approaches to connecting material on the web by exploiting linked datasets do not take into account the data characteristics of the cultural heritage domain. Funded by Semantic Media, the POWKist project is investigating how best to capture, curate, connect and present the contents of citizen-historians’ shoebox archives in an accessible and sustainable online collection. Using the Curios platform - an open-source digital archive - we have digitised a collection relating to a prisoner of war during WWII (1939-1945). Following a series of user group workshops, POWkist is now connecting these ‘made digital’ items with the broader web using a semantic technology model and identifying appropriate linked datasets of relevant content such as DBPedia (an archived linked dataset of Wikipedia) and Ordnance Survey Open Data. We are analysing the characteristics of cultural heritage linked datasets, so that these materials are better visualised, contextualised and presented in an attractive and comprehensive user interface. Our paper will consider the issues we have identified, the solutions we are developing and include a demonstration of our work-in-progress.
Resumo:
Rigid adherence to pre-specified thresholds and static graphical representations can lead to incorrect decisions on merging of clusters. As an alternative to existing automated or semi-automated methods, we developed a visual analytics approach for performing hierarchical clustering analysis of short time-series gene expression data. Dynamic sliders control parameters such as the similarity threshold at which clusters are merged and the level of relative intra-cluster distinctiveness, which can be used to identify "weak-edges" within clusters. An expert user can drill down to further explore the dendrogram and detect nested clusters and outliers. This is done by using the sliders and by pointing and clicking on the representation to cut the branches of the tree in multiple-heights. A prototype of this tool has been developed in collaboration with a small group of biologists for analysing their own datasets. Initial feedback on the tool has been positive.