2 resultados para WELL SYSTEMS
em Repository Napier
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Repository Napier (2)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (3)
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (33)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (21)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (3)
- Aston University Research Archive (69)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (17)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (41)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (36)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (10)
- CaltechTHESIS (2)
- CentAUR: Central Archive University of Reading - UK (55)
- Central European University - Research Support Scheme (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (5)
- Cochin University of Science & Technology (CUSAT), India (14)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (5)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (29)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (11)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (30)
- Digital Peer Publishing (4)
- Digital Repository at Iowa State University (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (42)
- DRUM (Digital Repository at the University of Maryland) (5)
- Duke University (4)
- Ecology and Society (1)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico do Porto, Portugal (23)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (10)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (3)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (4)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (3)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (6)
- Repositório da Produção Científica e Intelectual da Unicamp (26)
- Repositório de Administração Pública (REPAP) - Direção-Geral da Qualificação dos Trabalhadores em Funções Públicas (INA), Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (3)
- Repositório do ISCTE - Instituto Universitário de Lisboa (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (90)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (13)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- Scielo Saúde Pública - SP (24)
- Scielo Uruguai (1)
- Scientific Open-access Literature Archive and Repository (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad de Alicante (7)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (54)
- Universidade Complutense de Madrid (5)
- Universidade de Madeira (1)
- Universidade do Minho (8)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (15)
- Université de Lausanne, Switzerland (19)
- Université de Montréal (1)
- Université de Montréal, Canada (6)
- University of Michigan (4)
- University of Queensland eSpace - Australia (38)
- University of Washington (8)
- WestminsterResearch - UK (1)
Resumo:
The present paper introduces a technology-enhanced teaching method that promotes deep learning. Four stages that correspond to four different student cohorts were used for its development and to analyse its effectiveness. The effectiveness of the method has been assessed in terms of examination results as well as results obtained from class response system software statistics. The evidence gathered indicates that the method developed is very effective and its implementation is straightforward. Furthermore, its success in achieving results seems to be independent of the skills and/or experience of the lecturer.
Resumo:
Constant false alarm rate (CFAR) techniques can be used in Pseudo-Noise (PN) code acquisition in Spread Spectrum (SS) communication systems, and all the CFAR techniques perform well in homogeneous background PN code acquisition. However, in non-homogeneous background, some CFAR techniques suffer rapid degradation. GO/SO (Greatest-of/Smallest-of) CFAR and adaptive censored mean level detector (ACMLD) are two adaptive CFAR techniques, which are analyzed and compared with other CFAR techniques. The simulation results show that GO/SO CFAR is superior to other CFAR techniques, it maintains short mean acquisition time (MAT) even at environment with strong clutter noise, and ACMLD is suitable for background with strong interfering targets