3 resultados para Vehicle-to-Vehicle Communications
em Repository Napier
Distributed and compressed MIKEY mode to secure end-to-end communications in the Internet of things.
Resumo:
Multimedia Internet KEYing protocol (MIKEY) aims at establishing secure credentials between two communicating entities. However, existing MIKEY modes fail to meet the requirements of low-power and low-processing devices. To address this issue, we combine two previously proposed approaches to introduce a new distributed and compressed MIKEY mode for the Internet of Things. Indeed, relying on a cooperative approach, a set of third parties is used to discharge the constrained nodes from heavy computational operations. Doing so, the preshared mode is used in the constrained part of network, while the public key mode is used in the unconstrained part of the network. Furthermore, to mitigate the communication cost we introduce a new header compression scheme that reduces the size of MIKEY’s header from 12 Bytes to 3 Bytes in the best compression case. Preliminary results show that our proposed mode is energy preserving whereas its security properties are preserved untouched.
Resumo:
The vehicle navigation problem studied in Bell (2009) is revisited and a time-dependent reverse Hyperstar algorithm is presented. This minimises the expected time of arrival at the destination, and all intermediate nodes, where expectation is based on a pessimistic (or risk-averse) view of unknown link delays. This may also be regarded as a hyperpath version of the Chabini and Lan (2002) algorithm, which itself is a time-dependent A* algorithm. Links are assigned undelayed travel times and maximum delays, both of which are potentially functions of the time of arrival at the respective link. The driver seeks probabilities for link use that minimise his/her maximum exposure to delay on the approach to each node, leading to the determination of the pessimistic expected time of arrival. Since the context considered is vehicle navigation where the driver is not making repeated trips, the probability of link use may be interpreted as a measure of link attractiveness, so a link with a zero probability of use is unattractive while a link with a probability of use equal to one will have no attractive alternatives. A solution algorithm is presented and proven to solve the problem provided the node potentials are feasible and a FIFO condition applies for undelayed link travel times. The paper concludes with a numerical example.
Resumo:
This document describes a large set of Benchmark Problem Instances for the Rich Vehicle Routing Problem. All files are supplied as a single compressed (zipped) archive containing the instances, in XML format, an Object-Oriented Model supplied in XSD format, documentation and an XML parser written in Java to ease use.