19 resultados para TA Engineering (General). Civil engineering (General)

em Repository Napier


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Offshore wind turbines supported on monopile foundations are dynamically sensitive because the overall natural frequencies of these structures are close to the different forcing frequencies imposed upon them. The structures are designed for an intended life of 25 to 30 years, but little is known about their long term behaviour. To study their long term behaviour, a series of laboratory tests were conducted in which a scaled model wind turbine supported on a monopile in kaolin clay was subjected to between 32,000 and 172,000 cycles of horizontal loading and the changes in natural frequency and damping of the model were monitored. The experimental results are presented using a non-dimensional framework based on an interpretation of the governing mechanics. The change in natural frequency was found to be strongly dependent on the shear strain level in the soil next to the pile. Practical guidance for choosing the diameter of monopile is suggested based on element test results using the concept of volumetric threshold shear strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical and biological processes, such as dissolution in gypsiferous sands and biodegradation in waste refuse, result in mass or particle loss, which in turn lead to changes in solid and void phase volumes and grading. Data on phase volume and grading changes have been obtained from oedometric dissolution tests on sand–salt mixtures. Phase volume changes are defined by a (dissolution-induced) void volume change parameter (Λ). Grading changes are interpreted using grading entropy coordinates, which allow a grading curve to be depicted as a single data point and changes in grading as a vector quantity rather than a family of distribution curves. By combining Λ contours with pre- to post-dissolution grading entropy coordinate paths, an innovative interpretation of the volumetric consequences of particle loss is obtained. Paths associated with small soluble particles, the loss of which triggers relatively little settlement but large increase in void ratio, track parallel to the Λ contours. Paths associated with the loss of larger particles, which can destabilise the sand skeleton, tend to track across the Λ contours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study is twofold. Firstly, the paper investigates the undrained cyclic and post-cyclic behaviour of two silica sands by means of multi-stage cyclic triaxial tests. Secondly, based on the post-cyclic response observed in the element test, the authors formulate a simplified stress–strain relationship that can be conveniently used for the construction of p–y curves for liquefiable soils. The multi-stage loading condition consists of an initial cyclic loading applied to cause liquefaction, followed by undrained monotonic loading that aimed to investigate the post-cyclic response of the liquefied sample. It was found that due to the tendency of the liquefied soil to dilate upon undrained shearing, the post-liquefaction strain–stress response was characterised by a distinct strain–hardening behaviour. The latter is idealized by means of a bi-linear stress–strain model, which can be conveniently formulated in terms of three parameters, i.e.: (i) take-off shear strain, γto, i.e. shear strain required to mobilize 1 kPa of shear strength; (b) initial secant shear modulus, G1, defined as 1/γto; (c) post-liquefied shear modulus at large strain, G2 (γ⪢γto). Based on the experimental results, it is concluded that these parameters are strongly influenced by the initial relative density of the sample, whereby γto decreases with increasing relative density. Differently both shear moduli (G1 and G2) increases with increasing relative density. Lastly, the construction of new p–y curves for liquefiable soils based on the idealized bi-linear model is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the major challenges encountered in earthquake geotechnical physical modelling is to determine the effects induced by the artificial boundaries of the soil container on the dynamic response of the soil deposit. Over the past years, the use of absorbing material for minimising boundaries effects has become an increasing alternative solution, yet little systematic research has been carried out to quantify the dynamic performance of the absorbing material and the amount of energy dissipated by it. This paper aims to examine the effects induced by the absorbing material on the dynamic response of the soil, and estimate the amount of energy reduced by the absorbing boundaries. The absorbent material consisted of panels made of commercially available foams, which were placed on both inner sides of end-walls of the soil container. These walls are perpendicular to the shaking direction. Three types of foam with different mechanical properties were used in this study. The results were obtained from tests carried out using a shaking table and Redhill 110 sand for the soil deposit. It was found that a considerably amount of energy was dissipated, in particular within the frequency range close to the resonance of the soil deposit. This feature suggests that the presence of foams provides a significant influence to the dynamic response of the soil. The energy absorbed by the boundaries was also quantified from integrals of the Power Spectral Density of the accelerations. It was found that the absorbed energy ranged between a minimum of 41% to a maximum of 92% of the input levels, depending mainly on the foam used in the test. The effects provided by the acceleration levels and depth at which the energy was evaluated were practically negligible. Finally, practical guidelines for the selection of the absorbing material are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents experimental results that aimed to investigate the effects of soil liquefaction on the modal parameters (i.e. frequency and damping ratio) of pile-supported structures. The tests were carried out using the shaking table facility of the Bristol Laboratory for Advanced Dynamics Engineering (BLADE) at the University of Bristol (UK) whereby four pile-supported structures (two single piles and two pile groups) with and without superstructure mass were tested. The experimental investigation aimed to monitor the variation in natural frequency and damping of the four physical models at different degrees of excess pore water pressure generation and in full-liquefaction condition. The experimental results showed that the natural frequency of pile-supported structures may decrease considerably owing to the loss of lateral support offered by the soil to the pile. On the other hand, the damping ratio of structure may increase to values in excess of 20%. These findings have important design consequences: (a) for low-period structures, substantial reduction of spectral acceleration is expected; (b) during and after liquefaction, the response of the system may be dictated by the interactions of multiple loadings, that is, horizontal, axial and overturning moment, which were negligible prior to liquefaction; and (c) with the onset of liquefaction due to increased flexibility of pile-supported structure, larger spectral displacement may be expected, which in turn may enhance Pdelta effects and consequently amplification of overturning moment. Practical implications for pile design are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In practice, piles are most often modelled as "Beams on Non-Linear Winkler Foundation" (also known as “p-y spring” approach) where the soil is idealised as p-y springs. These p-y springs are obtained through semi-empirical approach using element test results of the soil. For liquefied soil, a reduction factor (often termed as p-multiplier approach) is applied on a standard p-y curve for the non-liquefied condition to obtain the p-y curve liquefied soil condition. This paper presents a methodology to obtain p-y curves for liquefied soil based on element testing of liquefied soil considering physically plausible mechanisms. Validation of the proposed p-y curves is carried out through the back analysis of physical model tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conference paper on a CD-Rom

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is no agreement between experimental researchers whether the point where a granular material responds with a large change of stresses, strains or excess pore water pressure given a prescribed small input of some of the same variables defines a straight line or a curve in the stress space. This line, known as the instability line, may also vary in shape and position if the onset of instability is measured from drained or undrained triaxial tests. Failure of granular materials, which might be preceded by the onset of instability, is a subject that the geotechnical engineers have to deal with in the daily practice, and generally speaking it is associated to different phenomena observed not only in laboratory tests but also in the field. Examples of this are the liquefaction of loose sands subjected to undrained loading conditions and the diffuse instability under drained loading conditions. This research presents results of DEM simulations of undrained triaxial tests with the aim of studying the influence of stress history and relative density on the onset of instability in granular materials. Micro-mechanical analysis including the evolution of coordination numbers and fabric tensors is performed aiming to gain further insight on the particle-scale interactions that underlie the occurrence of this instability. In addition to provide a greater understanding, the results presented here may be useful as input for macro-scale constitutive models that enable the prediction of the onset of instability in boundary value problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Design of geotechnical systems is often challenging as it requires the understanding of complex soil behaviour and its influence on field-scale performance of geo-structures. To advance the scientific knowledge and the technological development in geotechnical engineering, a Scottish academic community, named Scottish Universities Geotechnics Network (SUGN), was established in 2001, composing of eight higher education institutions. The network gathers geotechnics researchers, including experimentalists as well as centrifuge, constitutive, and numerical modellers, to generate multiple synergies for building larger collaboration and wider research dissemination in and beyond Scotland. The paper will highlight the research excellence and leading work undertaken in SUGN emphasising some of the contribution to the geotechnical research community and some of the significant research outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil particle loss can result in strength and volume reductions which are difficult to predict. This paper investigates the influence of the removal of fractions of selected particle sizes under different confining pressures. The mass loss process was reproduced by the dissolution of selected salt particle sizes and fractions from uniform Leighton Buzzard sand. The dissolution tests were performed in a triaxial cell customised to allow circulation of pore-fluid thereby allowing the dissolution/removal of the salt fraction. Test results from previously conducted oedometric dissolution tests and subsequent triaxial dissolution tests all show increases in void ratio. From the triaxial tests, a reduction in shear strength with increasing ductility was observed. Volumetric and strength behaviour were found to be related to the particle size and fraction material removed while shear-wave measurements obtained pre- and post-particle removal indicate significant changes in small-strain stiffness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of 3D DEM simulations of granular materials subject to cyclic loading. While both the drained and undrained conditions are considered, the effects of depositional history and consolidation stress history on the stress-strain response are specifically evaluated. It is demonstrated that the different stress histories have a significant effect on soil response and that such effects can be attributed to differences in the initial particle arrangement (fabric).

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Discrete Element Method (DEM) simulations ofelement tests cam provide significant insight into the micro-mechanics of soil response. It is well established that soil behaviour is strongly dependant on the initial density. Generation of particulate assemblies for three-dimensional DEM analyses must therefore allow for void ratio control. In this paper, different specimen generation approaches for DEM analyses are discussed. A methodology for the generation of assemblies of spherical particles with a specified initial density and stress state is presented. The effects of the different preparation methods on the specimen fabric are then considered in detail. For isotropic consolidation, it is shown that varying the coefficient of inter-particle friction allows control of the specimen void ratio at a specified confining stress. Simulations of anisotropic consolidation, from an initial isotropic stress state, to a final state where sigma(3) = K(0)sigma(1) indicated that the specimen void ratio and fabric are relatively insensitive to the intermediate stress path, provided an intermediate stress along the K(0) line was attained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different methods to study the evolution of fabric anisotropy are presented. DEM simulations on assemblies of spheres subjected to different stress paths using a three-dimensional periodic cell are used for the analysis of these methods. The links between soil fabric and macro-scale behaviour are also discussed.