2 resultados para Stars: mass-loss
em Repository Napier
Resumo:
Soil particle loss can result in strength and volume reductions which are difficult to predict. This paper investigates the influence of the removal of fractions of selected particle sizes under different confining pressures. The mass loss process was reproduced by the dissolution of selected salt particle sizes and fractions from uniform Leighton Buzzard sand. The dissolution tests were performed in a triaxial cell customised to allow circulation of pore-fluid thereby allowing the dissolution/removal of the salt fraction. Test results from previously conducted oedometric dissolution tests and subsequent triaxial dissolution tests all show increases in void ratio. From the triaxial tests, a reduction in shear strength with increasing ductility was observed. Volumetric and strength behaviour were found to be related to the particle size and fraction material removed while shear-wave measurements obtained pre- and post-particle removal indicate significant changes in small-strain stiffness.
Resumo:
Chemical and biological processes, such as dissolution in gypsiferous sands and biodegradation in waste refuse, result in mass or particle loss, which in turn lead to changes in solid and void phase volumes and grading. Data on phase volume and grading changes have been obtained from oedometric dissolution tests on sand–salt mixtures. Phase volume changes are defined by a (dissolution-induced) void volume change parameter (Λ). Grading changes are interpreted using grading entropy coordinates, which allow a grading curve to be depicted as a single data point and changes in grading as a vector quantity rather than a family of distribution curves. By combining Λ contours with pre- to post-dissolution grading entropy coordinate paths, an innovative interpretation of the volumetric consequences of particle loss is obtained. Paths associated with small soluble particles, the loss of which triggers relatively little settlement but large increase in void ratio, track parallel to the Λ contours. Paths associated with the loss of larger particles, which can destabilise the sand skeleton, tend to track across the Λ contours.