1 resultado para Multiple or Simultaneous Equation Models: Time-Series Models
em Repository Napier
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Repository Napier (1)
- Aberdeen University (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (12)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (36)
- Boston University Digital Common (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- Cambridge University Engineering Department Publications Database (32)
- CentAUR: Central Archive University of Reading - UK (38)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (10)
- Cochin University of Science & Technology (CUSAT), India (5)
- Collection Of Biostatistics Research Archive (8)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (5)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (1)
- DigitalCommons - The University of Maine Research (2)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (2)
- Harvard University (8)
- Helda - Digital Repository of University of Helsinki (10)
- Indian Institute of Science - Bangalore - Índia (19)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (34)
- Publishing Network for Geoscientific & Environmental Data (468)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (32)
- Queensland University of Technology - ePrints Archive (52)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (15)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (12)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- School of Medicine, Washington University, United States (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (7)
- Universidad Politécnica de Madrid (6)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (6)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (23)
- University of Connecticut - USA (2)
- University of Michigan (2)
- University of Queensland eSpace - Australia (5)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
Rigid adherence to pre-specified thresholds and static graphical representations can lead to incorrect decisions on merging of clusters. As an alternative to existing automated or semi-automated methods, we developed a visual analytics approach for performing hierarchical clustering analysis of short time-series gene expression data. Dynamic sliders control parameters such as the similarity threshold at which clusters are merged and the level of relative intra-cluster distinctiveness, which can be used to identify "weak-edges" within clusters. An expert user can drill down to further explore the dendrogram and detect nested clusters and outliers. This is done by using the sliders and by pointing and clicking on the representation to cut the branches of the tree in multiple-heights. A prototype of this tool has been developed in collaboration with a small group of biologists for analysing their own datasets. Initial feedback on the tool has been positive.