1 resultado para Multi-scheme ensemble prediction system
em Repository Napier
Filtro por publicador
- Repository Napier (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (26)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (34)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (25)
- Brock University, Canada (5)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- CentAUR: Central Archive University of Reading - UK (190)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (27)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (40)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (6)
- DigitalCommons@The Texas Medical Center (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (27)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (4)
- Galway Mayo Institute of Technology, Ireland (5)
- Greenwich Academic Literature Archive - UK (1)
- Institute of Public Health in Ireland, Ireland (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (80)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (9)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (11)
- Massachusetts Institute of Technology (2)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (1)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (16)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (24)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (22)
- Scielo Saúde Pública - SP (18)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (33)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (16)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (7)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (9)
- Université de Lausanne, Switzerland (68)
- Université de Montréal, Canada (34)
- University of Michigan (10)
- University of Queensland eSpace - Australia (61)
- University of Southampton, United Kingdom (1)
- University of Washington (2)
Resumo:
By proposing a numerical based method on PCA-ANFIS(Adaptive Neuro-Fuzzy Inference System), this paper is focusing on solving the problem of uncertain cycle of water injection in the oilfield. As the dimension of original data is reduced by PCA, ANFIS can be applied for training and testing the new data proposed by this paper. The correctness of PCA-ANFIS models are verified by the injection statistics data collected from 116 wells inside an oilfield, the average absolute error of testing is 1.80 months. With comparison by non-PCA based models which average error is 4.33 months largely ahead of PCA-ANFIS based models, it shows that the testing accuracy has been greatly enhanced by our approach. With the conclusion of the above testing, the PCA-ANFIS method is robust in predicting the effectiveness cycle of water injection which helps oilfield developers to design the water injection scheme.