1 resultado para Multi-choice aspiration levels
em Repository Napier
Filtro por publicador
- Repository Napier (1)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (10)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (2)
- Aston University Research Archive (29)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (209)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (38)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CentAUR: Central Archive University of Reading - UK (35)
- Centro Hospitalar do Porto (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (6)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (21)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (11)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (8)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (1)
- Institute of Public Health in Ireland, Ireland (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (3)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico do Porto, Portugal (95)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (3)
- QSpace: Queen's University - Canada (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (61)
- Repositório da Escola Nacional de Administração Pública (ENAP) (3)
- Repositório da Produção Científica e Intelectual da Unicamp (26)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório de Administração Pública (REPAP) - Direção-Geral da Qualificação dos Trabalhadores em Funções Públicas (INA), Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (27)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (23)
- Scielo Saúde Pública - SP (22)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (2)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (17)
- Universidade de Madeira (1)
- Universidade do Minho (1)
- Universidade dos Açores - Portugal (6)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (20)
- Université de Montréal (1)
- Université de Montréal, Canada (15)
- Université Laval Mémoires et thèses électroniques (1)
- University of Queensland eSpace - Australia (173)
- University of Washington (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Choosing a single similarity threshold for cutting dendrograms is not sufficient for performing hierarchical clustering analysis of heterogeneous data sets. In addition, alternative automated or semi-automated methods that cut dendrograms in multiple levels make assumptions about the data in hand. In an attempt to help the user to find patterns in the data and resolve ambiguities in cluster assignments, we developed MLCut: a tool that provides visual support for exploring dendrograms of heterogeneous data sets in different levels of detail. The interactive exploration of the dendrogram is coordinated with a representation of the original data, shown as parallel coordinates. The tool supports three analysis steps. Firstly, a single-height similarity threshold can be applied using a dynamic slider to identify the main clusters. Secondly, a distinctiveness threshold can be applied using a second dynamic slider to identify “weak-edges” that indicate heterogeneity within clusters. Thirdly, the user can drill-down to further explore the dendrogram structure - always in relation to the original data - and cut the branches of the tree at multiple levels. Interactive drill-down is supported using mouse events such as hovering, pointing and clicking on elements of the dendrogram. Two prototypes of this tool have been developed in collaboration with a group of biologists for analysing their own data sets. We found that enabling the users to cut the tree at multiple levels, while viewing the effect in the original data, is a promising method for clustering which could lead to scientific discoveries.