3 resultados para Mobile Computing
em Repository Napier
Resumo:
It is anticipated that constrained devices in the Internet of Things (IoT) will often operate in groups to achieve collective monitoring or management tasks. For sensitive and mission-critical sensing tasks, securing multicast applications is therefore highly desirable. To secure group communications, several group key management protocols have been introduced. However, the majority of the proposed solutions are not adapted to the IoT and its strong processing, storage, and energy constraints. In this context, we introduce a novel decentralized and batch-based group key management protocol to secure multicast communications. Our protocol is simple and it reduces the rekeying overhead triggered by membership changes in dynamic and mobile groups and guarantees both backward and forward secrecy. To assess our protocol, we conduct a detailed analysis with respect to its communcation and storage costs. This analysis is validated through simulation to highlight energy gains. The obtained results show that our protocol outperforms its peers with respect to keying overhead and the mobility of members.
Resumo:
Low-Power and Lossy-Network (LLN) are usually composed of static nodes, but the increase demand for mobility in mobile robotic and dynamic environment raises the question how a routing protocol for low-power and lossy-networks such as (RPL) would perform if a mobile sink is deployed. In this paper we investigate and evaluate the behaviour of the RPL protocol in fixed and mobile sink environments with respect to different network metrics such as latency, packet delivery ratio (PDR) and energy consumption. Extensive simulation using instant Contiki simulator show significant performance differences between fixed and mobile sink environments. Fixed sink LLNs performed better in terms of average power consumption, latency and packet delivery ratio. The results demonstrated also that RPL protocol is sensitive to mobility and it increases the number of isolated nodes.
Resumo:
Mobile devices offer a common platform for both leisure and work-related tasks but this has resulted in a blurred boundary between home and work. In this paper we explore the security implications of this blurred boundary, both for the worker and the employer. Mobile workers may not always make optimum security-related choices when ‘on the go’ and more impulsive individuals may be particularly affected as they are considered more vulnerable to distraction. In this study we used a task scenario, in which 104 users were asked to choose a wireless network when responding to work demands while out of the office. Eye-tracking data was obtained from a subsample of 40 of these participants in order to explore the effects of impulsivity on attention. Our results suggest that impulsive people are more frequent users of public devices and networks in their day-to-day interactions and are more likely to access their social networks on a regular basis. However they are also likely to make risky decisions when working on-the-go, processing fewer features before making those decisions. These results suggest that those with high impulsivity may make more use of the mobile Internet options for both work and private purposes but they also show attentional behavior patterns that suggest they make less considered security-sensitive decisions. The findings are discussed in terms of designs that might support enhanced deliberation, both in the moment and also in relation to longer term behaviors that would contribute to a better work-life balance.