4 resultados para Metrics of managment
em Repository Napier
Resumo:
SQL Injection Attack (SQLIA) remains a technique used by a computer network intruder to pilfer an organisation’s confidential data. This is done by an intruder re-crafting web form’s input and query strings used in web requests with malicious intent to compromise the security of an organisation’s confidential data stored at the back-end database. The database is the most valuable data source, and thus, intruders are unrelenting in constantly evolving new techniques to bypass the signature’s solutions currently provided in Web Application Firewalls (WAF) to mitigate SQLIA. There is therefore a need for an automated scalable methodology in the pre-processing of SQLIA features fit for a supervised learning model. However, obtaining a ready-made scalable dataset that is feature engineered with numerical attributes dataset items to train Artificial Neural Network (ANN) and Machine Leaning (ML) models is a known issue in applying artificial intelligence to effectively address ever evolving novel SQLIA signatures. This proposed approach applies numerical attributes encoding ontology to encode features (both legitimate web requests and SQLIA) to numerical data items as to extract scalable dataset for input to a supervised learning model in moving towards a ML SQLIA detection and prevention model. In numerical attributes encoding of features, the proposed model explores a hybrid of static and dynamic pattern matching by implementing a Non-Deterministic Finite Automaton (NFA). This combined with proxy and SQL parser Application Programming Interface (API) to intercept and parse web requests in transition to the back-end database. In developing a solution to address SQLIA, this model allows processed web requests at the proxy deemed to contain injected query string to be excluded from reaching the target back-end database. This paper is intended for evaluating the performance metrics of a dataset obtained by numerical encoding of features ontology in Microsoft Azure Machine Learning (MAML) studio using Two-Class Support Vector Machines (TCSVM) binary classifier. This methodology then forms the subject of the empirical evaluation.
Resumo:
Web threats are becoming a major issue for both governments and companies. Generally, web threats increased as much as 600% during last year (WebSense, 2013). This appears to be a significant issue, since many major businesses seem to provide these services. Denial of Service (DoS) attacks are one of the most significant web threats and generally their aim is to waste the resources of the target machine (Mirkovic & Reiher, 2004). Dis-tributed Denial of Service (DDoS) attacks are typically executed from many sources and can result in large traf-fic flows. During last year 11% of DDoS attacks were over 60 Gbps (Prolexic, 2013a). The DDoS attacks are usually performed from the large botnets, which are networks of remotely controlled computers. There is an increasing effort by governments and companies to shut down the botnets (Dittrich, 2012), which has lead the attackers to look for alternative DDoS attack methods. One of the techniques to which attackers are returning to is DDoS amplification attacks. Amplification attacks use intermediate devices called amplifiers in order to amplify the attacker's traffic. This work outlines an evaluation tool and evaluates an amplification attack based on the Trivial File Transfer Proto-col (TFTP). This attack could have amplification factor of approximately 60, which rates highly alongside other researched amplification attacks. This could be a substantial issue globally, due to the fact this protocol is used in approximately 599,600 publicly open TFTP servers. Mitigation methods to this threat have also been consid-ered and a variety of countermeasures are proposed. Effects of this attack on both amplifier and target were analysed based on the proposed metrics. While it has been reported that the breaching of TFTP would be possible (Schultz, 2013), this paper provides a complete methodology for the setup of the attack, and its verification.
Resumo:
Low-Power and Lossy-Network (LLN) are usually composed of static nodes, but the increase demand for mobility in mobile robotic and dynamic environment raises the question how a routing protocol for low-power and lossy-networks such as (RPL) would perform if a mobile sink is deployed. In this paper we investigate and evaluate the behaviour of the RPL protocol in fixed and mobile sink environments with respect to different network metrics such as latency, packet delivery ratio (PDR) and energy consumption. Extensive simulation using instant Contiki simulator show significant performance differences between fixed and mobile sink environments. Fixed sink LLNs performed better in terms of average power consumption, latency and packet delivery ratio. The results demonstrated also that RPL protocol is sensitive to mobility and it increases the number of isolated nodes.
Resumo:
Abstract: The importance of e-government models lies in their offering a basis to measure and guide e-government. There is still no agreement on how to assess a government online. Most of the e-government models are not based on research, nor are they validated. In most countries, e-government has not reached higher stages of growth. Several scholars have shown a confusing picture of e-government. What is lacking is an in-depth analysis of e-government models. Responding to the need for such an analysis, this study identifies the strengths and weaknesses of major national and local e-government evaluation models. The common limitations of most models are focusing on the government and not the citizen, missing qualitative measures, constructing the e-equivalent of a bureaucratic administration, and defining general criteria without sufficient validations. In addition, this study has found that the metrics defined for national e-government are not suitable for municipalities, and most of the existing studies have focused on national e-governments even though local ones are closer to citizens. There is a need for developing a good theoretical model for both national and local municipal e-government.