1 resultado para Least-squares support vector machine
em Repository Napier
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (7)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Aston University Research Archive (24)
- Biblioteca de Teses e Dissertações da USP (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (50)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (14)
- Brock University, Canada (9)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CentAUR: Central Archive University of Reading - UK (108)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (5)
- Cochin University of Science & Technology (CUSAT), India (13)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (36)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (5)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (5)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (6)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (33)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (22)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (4)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (24)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (6)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- RDBU - Repositório Digital da Biblioteca da Unisinos (2)
- Repositorio Academico Digital UANL (1)
- Repositório Científico da Universidade de Évora - Portugal (5)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (17)
- Repositório da Produção Científica e Intelectual da Unicamp (9)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Brasília (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (51)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (22)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (61)
- Scielo Uruguai (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (4)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (10)
- Universidad Politécnica de Madrid (22)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (7)
- Universidade dos Açores - Portugal (1)
- Universidade Federal de Uberlândia (2)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (16)
- Universidade Metodista de São Paulo (4)
- Universidade Técnica de Lisboa (2)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (95)
- Université de Montréal, Canada (21)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (2)
- University of Connecticut - USA (1)
- University of Michigan (6)
- University of Queensland eSpace - Australia (39)
- University of Washington (3)
Resumo:
SQL Injection Attack (SQLIA) remains a technique used by a computer network intruder to pilfer an organisation’s confidential data. This is done by an intruder re-crafting web form’s input and query strings used in web requests with malicious intent to compromise the security of an organisation’s confidential data stored at the back-end database. The database is the most valuable data source, and thus, intruders are unrelenting in constantly evolving new techniques to bypass the signature’s solutions currently provided in Web Application Firewalls (WAF) to mitigate SQLIA. There is therefore a need for an automated scalable methodology in the pre-processing of SQLIA features fit for a supervised learning model. However, obtaining a ready-made scalable dataset that is feature engineered with numerical attributes dataset items to train Artificial Neural Network (ANN) and Machine Leaning (ML) models is a known issue in applying artificial intelligence to effectively address ever evolving novel SQLIA signatures. This proposed approach applies numerical attributes encoding ontology to encode features (both legitimate web requests and SQLIA) to numerical data items as to extract scalable dataset for input to a supervised learning model in moving towards a ML SQLIA detection and prevention model. In numerical attributes encoding of features, the proposed model explores a hybrid of static and dynamic pattern matching by implementing a Non-Deterministic Finite Automaton (NFA). This combined with proxy and SQL parser Application Programming Interface (API) to intercept and parse web requests in transition to the back-end database. In developing a solution to address SQLIA, this model allows processed web requests at the proxy deemed to contain injected query string to be excluded from reaching the target back-end database. This paper is intended for evaluating the performance metrics of a dataset obtained by numerical encoding of features ontology in Microsoft Azure Machine Learning (MAML) studio using Two-Class Support Vector Machines (TCSVM) binary classifier. This methodology then forms the subject of the empirical evaluation.