4 resultados para Internet security applications

em Repository Napier


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays there is almost no crime committed without a trace of digital evidence, and since the advanced functionality of mobile devices today can be exploited to assist in crime, the need for mobile forensics is imperative. Many of the mobile applications available today, including internet browsers, will request the user’s permission to access their current location when in use. This geolocation data is subsequently stored and managed by that application's underlying database files. If recovered from a device during a forensic investigation, such GPS evidence and track points could hold major evidentiary value for a case. The aim of this paper is to examine and compare to what extent geolocation data is available from the iOS and Android operating systems. We focus particularly on geolocation data recovered from internet browsing applications, comparing the native Safari and Browser apps with Google Chrome, downloaded on to both platforms. All browsers were used over a period of several days at various locations to generate comparable test data for analysis. Results show considerable differences not only in the storage locations and formats, but also in the amount of geolocation data stored by different browsers and on different operating systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Securing e-health applications in the context of Internet of Things (IoT) is challenging. Indeed, resources scarcity in such environment hinders the implementation of existing standard based protocols. Among these protocols, MIKEY (Multimedia Internet KEYing) aims at establishing security credentials between two communicating entities. However, the existing MIKEY modes fail to meet IoT specificities. In particular, the pre-shared key mode is energy efficient, but suffers from severe scalability issues. On the other hand, asymmetric modes such as the public key mode are scalable, but are highly resource consuming. To address this issue, we combine two previously proposed approaches to introduce a new hybrid MIKEY mode. Indeed, relying on a cooperative approach, a set of third parties is used to discharge the constrained nodes from heavy computational operations. Doing so, the pre-shared mode is used in the constrained part of the network, while the public key mode is used in the unconstrained part of the network. Preliminary results show that our proposed mode is energy preserving whereas its security properties are kept safe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is anticipated that constrained devices in the Internet of Things (IoT) will often operate in groups to achieve collective monitoring or management tasks. For sensitive and mission-critical sensing tasks, securing multicast applications is therefore highly desirable. To secure group communications, several group key management protocols have been introduced. However, the majority of the proposed solutions are not adapted to the IoT and its strong processing, storage, and energy constraints. In this context, we introduce a novel decentralized and batch-based group key management protocol to secure multicast communications. Our protocol is simple and it reduces the rekeying overhead triggered by membership changes in dynamic and mobile groups and guarantees both backward and forward secrecy. To assess our protocol, we conduct a detailed analysis with respect to its communcation and storage costs. This analysis is validated through simulation to highlight energy gains. The obtained results show that our protocol outperforms its peers with respect to keying overhead and the mobility of members.