2 resultados para Internet Protocol Television (IPTV)
em Repository Napier
Resumo:
It is anticipated that constrained devices in the Internet of Things (IoT) will often operate in groups to achieve collective monitoring or management tasks. For sensitive and mission-critical sensing tasks, securing multicast applications is therefore highly desirable. To secure group communications, several group key management protocols have been introduced. However, the majority of the proposed solutions are not adapted to the IoT and its strong processing, storage, and energy constraints. In this context, we introduce a novel decentralized and batch-based group key management protocol to secure multicast communications. Our protocol is simple and it reduces the rekeying overhead triggered by membership changes in dynamic and mobile groups and guarantees both backward and forward secrecy. To assess our protocol, we conduct a detailed analysis with respect to its communcation and storage costs. This analysis is validated through simulation to highlight energy gains. The obtained results show that our protocol outperforms its peers with respect to keying overhead and the mobility of members.
Distributed and compressed MIKEY mode to secure end-to-end communications in the Internet of things.
Resumo:
Multimedia Internet KEYing protocol (MIKEY) aims at establishing secure credentials between two communicating entities. However, existing MIKEY modes fail to meet the requirements of low-power and low-processing devices. To address this issue, we combine two previously proposed approaches to introduce a new distributed and compressed MIKEY mode for the Internet of Things. Indeed, relying on a cooperative approach, a set of third parties is used to discharge the constrained nodes from heavy computational operations. Doing so, the preshared mode is used in the constrained part of network, while the public key mode is used in the unconstrained part of the network. Furthermore, to mitigate the communication cost we introduce a new header compression scheme that reduces the size of MIKEY’s header from 12 Bytes to 3 Bytes in the best compression case. Preliminary results show that our proposed mode is energy preserving whereas its security properties are preserved untouched.