2 resultados para Infant Nutrition Physiology

em Repository Napier


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to assess the factors which may influence the timing of the introduction of solid food to infants. The design was a prospective cohort study by interview and postal questionnaire. Primiparous women (n 541) aged between 16 and 40 years were approached in the Forth Park Maternity Hospital, Fife, Scotland. Of these, 526 women agreed to participate and seventy-eight were used as subjects in the pilot study. At 12 weeks we interviewed 338 women of the study sample. The postal questionnaire was returned by 286 of 448 volunteers. At 12 weeks 133 of 338 mothers said that they had introduced solids. Those that said that they had introduced solids early (<12 weeks) were compared with those who had introduced solids late (>12 weeks) by bivariate and multiple regression analysis. Psychosocial factors influencing the decision were measured with the main outcome measure being the time of introduction of solid food. The early introduction of solids was found to be associated with: the opinions of the infant's maternal grandmother; living in a deprived area; personal disagreement with the advice to wait until the baby was 4 months; lack of encouragement from friends to wait until the baby was 4 months; being in receipt of free samples of manufactured food. Answers to open-ended questions indicated that the early introduction appeared to be influenced by the mothers’ perceptions of the baby's needs. Some of the factors influencing a woman's decision to introduce solids are amenable to change, and these could be targeted in educational interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC) and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC) negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8) and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1) availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth) of the scleractinian coral Acropora millepora (Ehrenberg, 1834) from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world scenarios, as multiple rather than single factors influence key physiological processes in coral reefs.