2 resultados para In-cell
em Repository Napier
Resumo:
The ptsH gene, encoding the phosphotransferase protein HPr, from Clostridium acetobutylicum ATCC 824 was identified from the genome sequence, cloned and shown to complement a ptsH mutant of Escherichia coli. The deduced protein sequence shares significant homology with HPr proteins from other low-GC gram-positive bacteria, although the highly conserved sequence surrounding the Ser-46 phosphorylation site is not well preserved in the clostridial protein. Nevertheless, the HPr was phosphorylated in an ATP-dependent manner in cell-free extracts of C. acetobutylicum. Furthermore, purified His-tagged HPr from Bacillus subtilis was also a substrate for the clostridial HPr kinase/phosphorylase. This phosphorylation reaction is a key step in the mechanism of carbon catabolite repression proposed to operate in B. subtilis and other low-GC gram-positive bacteria. Putative genes encoding the HPr kinase/phosphorylase and the other element of this model, namely the catabolite control protein CcpA, were identified from the C. acetobutylicum genome sequence, suggesting that a similar mechanism of carbon catabolite repression may operate in this industrially important organism.
Resumo:
Polycystic Ovary Syndrome (PCOS) is a complex disorder encompassing reproductive and metabolic dysfunction. Ovarian hyperandrogenism is an endocrine hallmark of human PCOS. In animal models, PCOS-like abnormalities can be recreated by in utero over-exposure to androgenic steroid hormones. This thesis investigated pancreatic and adrenal development and function in a unique model of PCOS. Fetal sheep were directly exposed (day 62 and day 82 of gestation) to steroidal excesses - androgen excess (testosterone propionate - TP), estrogen excess (diethylstilbestrol - DES) or glucocorticoid excess (dexamethasone - DEX). At d90 gestation there was elevated expression of genes involved in β- cell development and function: PDX-1 (P<0.001), and INS (P<0.05), INSR (P<0.05) driven by androgenic excess only in the female fetal pancreas. β- cell numbers (P<0.001) and in vitro insulin secretion (P<0.05) were also elevated in androgen exposed female fetuses. There was a significant increase in insulin secreting β-cell numbers (P<0.001) and in vivo insulin secretion (glucose stimulated) (P<0.01) in adult female offspring, specifically associated with prenatal androgen excess. At d90 gestation, female fetal adrenal gene expression was perturbed by fetal estrogenic exposure. Male fetal adrenal gene expression was altered more dramatically by fetal glucocorticoid exposure. In female adult offspring from androgen exposed pregnancies there was increased adrenal steroidogenic gene expression and in vivo testosterone secretion (P<0.01). This highlights that the adrenal glands may contribute towards excess androgen secretion in PCOS, but such effects might be secondary to other metabolic alterations driven by prenatal androgen exposure, such as excess insulin secretion Thus there may be dialogue between the pancreas and adrenal gland, programmed during early life, with implications for adult health Given both hyperinsulinaemia and hyperandrogenism are common features in PCOS, we suggest that their origins may be at least partially due to altered fetal steroidal environments, specifically excess androgenic stimulation