2 resultados para Improvement, reclamation, fertilisation, irrigation etc., of lands (Melioration)
em Repository Napier
Resumo:
Objective To develop a structurally valid and reliable, yet brief measure of patient experience of hospital quality of care, the Care Experience Feedback Improvement Tool (CEFIT). Also, to examine aspects of utility of CEFIT. Background Measuring quality improvement at the clinical interface has become a necessary component of healthcare measurement and improvement plans, but the effectiveness of measuring such complexity is dependent on the purpose and utility of the instrument used. Methods CEFIT was designed from a theoretical model, derived from the literature and a content validity index (CVI) procedure. A telephone population surveyed 802 eligible participants (healthcare experience within the previous 12 months) to complete CEFIT. Internal consistency reliability was tested using Cronbach's α. Principal component analysis was conducted to examine the factor structure and determine structural validity. Quality criteria were applied to judge aspects of utility. Results CVI found a statistically significant proportion of agreement between patient and practitioner experts for CEFIT construction. 802 eligible participants answered the CEFIT questions. Cronbach's α coefficient for internal consistency indicated high reliability (0.78). Interitem (question) total correlations (0.28–0.73) were used to establish the final instrument. Principal component analysis identified one factor accounting for 57.3% variance. Quality critique rated CEFIT as fair for content validity, excellent for structural validity, good for cost, poor for acceptability and good for educational impact. Conclusions CEFIT offers a brief yet structurally sound measure of patient experience of quality of care. The briefness of the 5-item instrument arguably offers high utility in practice. Further studies are needed to explore the utility of CEFIT to provide a robust basis for feedback to local clinical teams and drive quality improvement in the provision of care experience for patients. Further development of aspects of utility is also required.
Resumo:
Window design plays an important role in achieving energy efficient buildings and in providing thermal comfort of building occupants. This paper investigates a newly developed aerogel window and the potential improvement on the comfort factors of an office in relation to daylighting. Improved comfort levels can impact on health and wellbeing of building occupants leading to knock on effects on absenteeism and productivity. A simulation tool was presently created that will easily enable comparison of different façade design and their impact on heat and light transmission and therefore enable optimisation. One of the most important aspects of the present work was comparing the performance of the newly developed aerogel window against the more traditional Argon-filled, coated double-glazing. Whereas the aerogel window provided an extremely low heat-loss index of 0.3 W/m2K, the latter usually offered a centre-glazing U-value of 1.4 W/m2K. On a like-with-like basis the daylight transmission of the aerogel window was significantly lower than double-glazing. However, in view of low thermal loss larger areas of the former can be deployed. This article presents the influence of three key parameters that may lead to an optimum design: daylight, thermal loss and solar gain.