2 resultados para Hydrodynamic conditions
em Repository Napier
Resumo:
Exposure trials on timber cladding are valuable for informing facade designers. This paper describes a trial using Sitka spruce (Picea sitchensis). Sitka spruce is the only UK-grown timber available in sufficient volume to supply the growing cladding market, but its suitability is unclear. Data indicated that the moisture content range in timber cladding was wider than generally accepted. The minimum of around 10% moisture content appeared to be similar for all details tested. The maximum was influenced by construction detailing but was around 30%. From a theoretical standpoint, the range, and rate, of moisture content fluctuation observed meant that the commonly quoted average value was largely irrelevant. The mode was a more representative statistic; most of the data were skewed towards the wood's fibre saturation point. Sitka spruce is, therefore, at risk of fungal decay and is only suitable as external cladding in the UK if treated with preservative
Resumo:
Aqueous solutions of amphiphilic polymers usually comprise of inter- and intramolecular associations of hydrophobic groups often leading to a formation of a rheologically significant reversible network at low concentrations that can be identified using techniques such as static light scattering and rheometry. However, in most studies published till date comparing water soluble polymers with their respective amphiphilic derivatives, it has been very difficult to distinguish between the effects of molecular mass versus hydrophobic associations on hydrodynamic (intrinsic viscosity [g]) and thermodynamic parameters (second virial coefficient A2), owing to the differences between their degrees of polymerization. This study focuses on the dilute and semi-dilute solutions of hydroxyethyl cellulose (HEC) and its amphiphilic derivatives (hmHEC) of the same molecular mass, along with other samples having a different molecular mass using capillary viscometry, rheometry and static light scattering. The weight average molecular masses (MW) and their distributions for the nonassociative HEC were determined using size exclusion chromatography. Various empirical approaches developed by past authors to determine [g] from dilute solution viscometry data have been discussed. hmHEC with a sufficiently high degree of hydrophobic modification was found to be forming a rheologically significant network in dilute solutions at very low concentrations as opposed to the hmHEC with a much lower degree of hydrophobic modification which also enveloped the hydrophobic groups inside the supramolecular cluster as shown by their [g] and A2. The ratio A2MW/[g], which takes into account hydrodynamic as well as thermodynamic parameters, was observed to be less for associative polymers compared to that of the non-associative polymers.