2 resultados para Green Tree Ant

em Repository Napier


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is in the interests of everybody that the environment is protected. In view of the recent leaps in environmental awareness it would seem timely and sensible, therefore, for people to pool vehicle resources to minimise the damaging impact of emissions. However, this is often contrary to how complex social systems behave – local decisions made by self-interested individuals often have emergent effects that are in the interests of nobody. For software engineers a major challenge is to help facilitate individual decision-making such that individual preferences can be met, which, when accumulated, minimise adverse effects at the level of the transport system. We introduce this general problem through a concrete example based on vehicle-sharing. Firstly, we outline the kind of complex transportation problem that is directly addressed by our technology (CO2y™ - pronounced “cosy”), and also show how this differs from other more basic software solutions. The CO2y™ architecture is then briefly introduced. We outline the practical advantages of the advanced, intelligent software technology that is designed to satisfy a number of individual preference criteria and thereby find appropriate matches within a population of vehicle-share users. An example scenario of use is put forward, i.e., minimisation of grey-fleets within a medium-sized company. Here we comment on some of the underlying assumptions of the scenario, and how in a detailed real-world situation such assumptions might differ between different companies, and individual users. Finally, we summarise the paper, and conclude by outlining how the problem of pooled transportation is likely to benefit from the further application of emergent, nature-inspired computing technologies. These technologies allow systems-level behaviour to be optimised with explicit representation of individual actors. With these techniques we hope to make real progress in facing the complexity challenges that transportation problems produce.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discussion Conclusions Materials and Methods Acknowledgments Author Contributions References Reader Comments (0) Figures Abstract The importance of mangrove forests in carbon sequestration and coastal protection has been widely acknowledged. Large-scale damage of these forests, caused by hurricanes or clear felling, can enhance vulnerability to erosion, subsidence and rapid carbon losses. However, it is unclear how small-scale logging might impact on mangrove functions and services. We experimentally investigated the impact of small-scale tree removal on surface elevation and carbon dynamics in a mangrove forest at Gazi bay, Kenya. The trees in five plots of a Rhizophora mucronata (Lam.) forest were first girdled and then cut. Another set of five plots at the same site served as controls. Treatment induced significant, rapid subsidence (−32.1±8.4 mm yr−1 compared with surface elevation changes of +4.2±1.4 mm yr−1 in controls). Subsidence in treated plots was likely due to collapse and decomposition of dying roots and sediment compaction as evidenced from increased sediment bulk density. Sediment effluxes of CO2 and CH4 increased significantly, especially their heterotrophic component, suggesting enhanced organic matter decomposition. Estimates of total excess fluxes from treated compared with control plots were 25.3±7.4 tCO2 ha−1 yr−1 (using surface carbon efflux) and 35.6±76.9 tCO2 ha−1 yr−1 (using surface elevation losses and sediment properties). Whilst such losses might not be permanent (provided cut areas recover), observed rapid subsidence and enhanced decomposition of soil sediment organic matter caused by small-scale harvesting offers important lessons for mangrove management. In particular mangrove managers need to carefully consider the trade-offs between extracting mangrove wood and losing other mangrove services, particularly shoreline stabilization, coastal protection and carbon storage.