2 resultados para Environmental analysis
em Repository Napier
Resumo:
Although the acetone-butanol-ethanol (ABE) fermentation of Clostridium acetobutylicum is currently uneconomic, the ability of the bacterium to metabolise a wide range of carbohydrates offers the potential for revival based on the use of cheap, low grade substrates. We have investigated the uptake and metabolism of lactose, the major sugar in industrial whey waste, by C. acetobutylicum ATCC 824. Lactose is taken up via a phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) comprising both soluble and membrane-associated components, and the resulting phosphorylated derivative is hydrolysed by a phospho--galactosidase. These activities are induced during growth on lactose, but are absent in glucose-grown cells. Analysis of the C. acetobutylicum genome sequence identified a gene system, lacRFEG, encoding a transcriptional regulator of the DeoR family, IIA and IICB components of a lactose PTS, and phospho--galactosidase. During growth in medium containing both glucose and lactose, C. acetobutylicum exhibited a classical diauxic growth, and the lac operon was not expressed until glucose was exhausted from the medium. The presence upstream of lacR of a potential catabolite responsive element (cre) encompassing the transcriptional start site is indicative of the mechanism of carbon catabolite repression characteristic of low-GC Gram-positive bacteria. A pathway for the uptake and metabolism of lactose by this industrially important organism is proposed.
Resumo:
Transport and its energetic and environmental impacts affect our daily lives. The transport sector is the backbone of the United Kingdom’s economy with 2.3 million people being employed in this sector. With a high dependency on transport for passengers and freight and with the knowledge that oil reserves are rapidly decreasing a solution has to be identified for conserving fuel. Passenger vehicles account for 61% of the transport fuel consumed in the U.K. and should be seen as a key area to tackle. Despite the introduction and development of electric powered cars, the widespread infrastructure that is required is not in place and has attributed to their slow uptake, as well as the fact that the electric car’s performance is not yet comparable with the conventional internal combustion engine. The benefits of the introduction of kinetic energy recovery systems to be used in conjunction with internal combustion engines and designed such that the system could easily be fitted into future passenger vehicles are examined. In this article, a review of automobile kinetic energy recovery system is presented. It has been argued that the ultracapacitor technology offers a sustainable solution. An optimum design for the urban driving cycle experienced in the city of Edinburgh has been introduced. The potential for fuel savings is also presented