33 resultados para Electronic villages (Computer networks)
em Repository Napier
Resumo:
This paper explores hybrid forms of contemporary political opinion-making online, which we name ePunditry. The ePundit utilizes Web 2.0 technologies and networks to distribute their work: changing and challenging the boundaries and hierarchies of the existing opinion space, across multiple platforms. Drawing on the language of media ecology we define and give examples of ePunditry. We also consider the impact of the ePundit upon the wider media landscape, alongside the empowered role of the readership.
Resumo:
Participation Space Studies explore eParticipation in the day-to-day activities of local, citizen-led groups, working to improve their communities. The focus is the relationship between activities and contexts. The concept of a participation space is introduced in order to reify online and offline contexts where people participate in democracy. Participation spaces include websites, blogs, email, social media presences, paper media, and physical spaces. They are understood as sociotechnical systems: assemblages of heterogeneous elements, with relevant histories and trajectories of development and use. This approach enables the parallel study of diverse spaces, on and offline. Participation spaces are investigated within three case studies, centred on interviews and participant observation. Each case concerns a community or activist group, in Scotland. The participation spaces are then modelled using a Socio-Technical Interaction Network (STIN) framework (Kling, McKim and King, 2003). The participation space concept effectively supports the parallel investigation of the diverse social and technical contexts of grassroots democracy and the relationship between the case-study groups and the technologies they use to support their work. Participants’ democratic participation is supported by online technologies, especially email, and they create online communities and networks around their goals. The studies illustrate the mutual shaping relationship between technology and democracy. Participants’ choice of technologies can be understood in spatial terms: boundaries, inhabitants, access, ownership, and cost. Participation spaces and infrastructures are used together and shared with other groups. Non-public online spaces, such as Facebook groups, are vital contexts for eParticipation; further, the majority of participants’ work is non-public, on and offline. It is informational, potentially invisible, work that supports public outputs. The groups involve people and influence events through emotional and symbolic impact, as well as rational argument. Images are powerful vehicles for this and digital images become an increasingly evident and important feature of participation spaces throughout the consecutively conducted case studies. Collaboration of diverse people via social media indicates that these spaces could be understood as boundary objects (Star and Griesemer, 1989). The Participation Space Studies draw from and contribute to eParticipation, social informatics, mediation, social shaping studies, and ethnographic studies of Internet use.
Resumo:
Individuals living in highly networked societies publish a large amount of personal, and potentially sensitive, information online. Web investigators can exploit such information for a variety of purposes, such as in background vetting and fraud detection. However, such investigations require a large number of expensive man hours and human effort. This paper describes InfoScout, a search tool which is intended to reduce the time it takes to identify and gather subject centric information on the Web. InfoScout collects relevance feedback information from the investigator in order to rerank search results, allowing the intended information to be discovered more quickly. Users may still direct their search as they see fit, issuing ad-hoc queries and filtering existing results by keywords. Design choices are informed by prior work and industry collaboration.
Resumo:
The International Conference on Advanced Materials, Structures and Mechanical Engineering 2015 (ICAMSME 2015) was held on May 29-31, Incheon, South-Korea. The conference was attended by scientists, scholars, engineers and students from universities, research institutes and industries all around the world to present on going research activities. This proceedings volume assembles papers from various professionals engaged in the fields of materials, structures and mechanical engineering.
Resumo:
This paper analyzes the inner relations between classical sub-scheme probability and statistic probability, subjective probability and objective probability, prior probability and posterior probability, transition probability and probability of utility, and further analysis the goal, method, and its practical economic purpose which represent by these various probability from the perspective of mathematics, so as to deeply understand there connotation and its relation with economic decision making, thus will pave the route for scientific predication and decision making.
Resumo:
Decision-making is often dependent on uncertain data, e.g. data associated with confidence scores or probabilities. We present a comparison of different informa- tion presentations for uncertain data and, for the first time, measure their effects on human decision-making. We show that the use of Natural Language Genera- tion (NLG) improves decision-making un- der uncertainty, compared to state-of-the- art graphical-based representation meth- ods. In a task-based study with 442 adults, we found that presentations using NLG lead to 24% better decision-making on av- erage than the graphical presentations, and to 44% better decision-making when NLG is combined with graphics. We also show that women achieve significantly better re- sults when presented with NLG output (an 87% increase on average compared to graphical presentations).
Resumo:
Securing e-health applications in the context of Internet of Things (IoT) is challenging. Indeed, resources scarcity in such environment hinders the implementation of existing standard based protocols. Among these protocols, MIKEY (Multimedia Internet KEYing) aims at establishing security credentials between two communicating entities. However, the existing MIKEY modes fail to meet IoT specificities. In particular, the pre-shared key mode is energy efficient, but suffers from severe scalability issues. On the other hand, asymmetric modes such as the public key mode are scalable, but are highly resource consuming. To address this issue, we combine two previously proposed approaches to introduce a new hybrid MIKEY mode. Indeed, relying on a cooperative approach, a set of third parties is used to discharge the constrained nodes from heavy computational operations. Doing so, the pre-shared mode is used in the constrained part of the network, while the public key mode is used in the unconstrained part of the network. Preliminary results show that our proposed mode is energy preserving whereas its security properties are kept safe.
Resumo:
This paper presents the evaluation of morpheme a sketching interface for the control of sound synthesis. We explain the task that was designed in order to assess the effectiveness of the interface, detect usability issues and gather participants’ responses regarding cognitive, experiential and expressive aspects of the interaction. The evaluation comprises a design task, where partici-pants were asked to design two soundscapes using the morpheme interface for two video footages. Responses were gathered using a series of likert type and open-ended questions. The analysis of the data gathered revealed a number of usability issues, however the performance of morpheme was satisfactory and participants recognised the creative potential of the interface and the synthesis methods for sound design applications.
Resumo:
Sound is potentially an effective way of analysing data and it is possible to simultaneously interpret layers of sounds and identify changes. Multiple attempts to use sound with scientific data have been made, with varying levels of success. On many occasions this was done without including the end user during the development. In this study a sonified model of the 8 planets of our solar system was built and tested using an end user approach. The sonification was created for the Esplora Planetarium, which is currently being constructed in Malta. The data requirements were gathered from a member of the planetarium staff, and 12 end users, as well as the planetarium representative tested the sonification. The results suggest that listeners were able to discern various planetary characteristics without requiring any additional information. Three out of eight sound design parameters did not represent characteristics successfully. These issues have been identified and further development will be conducted in order to improve the model.
Resumo:
SQL Injection Attack (SQLIA) remains a technique used by a computer network intruder to pilfer an organisation’s confidential data. This is done by an intruder re-crafting web form’s input and query strings used in web requests with malicious intent to compromise the security of an organisation’s confidential data stored at the back-end database. The database is the most valuable data source, and thus, intruders are unrelenting in constantly evolving new techniques to bypass the signature’s solutions currently provided in Web Application Firewalls (WAF) to mitigate SQLIA. There is therefore a need for an automated scalable methodology in the pre-processing of SQLIA features fit for a supervised learning model. However, obtaining a ready-made scalable dataset that is feature engineered with numerical attributes dataset items to train Artificial Neural Network (ANN) and Machine Leaning (ML) models is a known issue in applying artificial intelligence to effectively address ever evolving novel SQLIA signatures. This proposed approach applies numerical attributes encoding ontology to encode features (both legitimate web requests and SQLIA) to numerical data items as to extract scalable dataset for input to a supervised learning model in moving towards a ML SQLIA detection and prevention model. In numerical attributes encoding of features, the proposed model explores a hybrid of static and dynamic pattern matching by implementing a Non-Deterministic Finite Automaton (NFA). This combined with proxy and SQL parser Application Programming Interface (API) to intercept and parse web requests in transition to the back-end database. In developing a solution to address SQLIA, this model allows processed web requests at the proxy deemed to contain injected query string to be excluded from reaching the target back-end database. This paper is intended for evaluating the performance metrics of a dataset obtained by numerical encoding of features ontology in Microsoft Azure Machine Learning (MAML) studio using Two-Class Support Vector Machines (TCSVM) binary classifier. This methodology then forms the subject of the empirical evaluation.
Distributed and compressed MIKEY mode to secure end-to-end communications in the Internet of things.
Resumo:
Multimedia Internet KEYing protocol (MIKEY) aims at establishing secure credentials between two communicating entities. However, existing MIKEY modes fail to meet the requirements of low-power and low-processing devices. To address this issue, we combine two previously proposed approaches to introduce a new distributed and compressed MIKEY mode for the Internet of Things. Indeed, relying on a cooperative approach, a set of third parties is used to discharge the constrained nodes from heavy computational operations. Doing so, the preshared mode is used in the constrained part of network, while the public key mode is used in the unconstrained part of the network. Furthermore, to mitigate the communication cost we introduce a new header compression scheme that reduces the size of MIKEY’s header from 12 Bytes to 3 Bytes in the best compression case. Preliminary results show that our proposed mode is energy preserving whereas its security properties are preserved untouched.