1 resultado para EAR HEIGHT
em Repository Napier
Filtro por publicador
- Repository Napier (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Aquatic Commons (5)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (7)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (17)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- Biodiversity Heritage Library, United States (2)
- Bioline International (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (49)
- Brock University, Canada (5)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Cambridge University Engineering Department Publications Database (6)
- CentAUR: Central Archive University of Reading - UK (25)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (15)
- Cochin University of Science & Technology (CUSAT), India (2)
- Coffee Science - Universidade Federal de Lavras (1)
- Dalarna University College Electronic Archive (3)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (7)
- Digital Repository at Iowa State University (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (3)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (27)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (3)
- Helda - Digital Repository of University of Helsinki (12)
- Hospitais da Universidade de Coimbra (1)
- Indian Institute of Science - Bangalore - Índia (34)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (3)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (1)
- National Center for Biotechnology Information - NCBI (11)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Publishing Network for Geoscientific & Environmental Data (59)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (28)
- Queensland University of Technology - ePrints Archive (357)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (3)
- Repositório Institucional dos Hospitais da Universidade Coimbra (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (116)
- School of Medicine, Washington University, United States (13)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (4)
- Universidade Complutense de Madrid (1)
- Universidade de Madeira (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (4)
- University of Connecticut - USA (4)
- University of Michigan (37)
- University of Queensland eSpace - Australia (21)
- WestminsterResearch - UK (1)
Resumo:
Rigid adherence to pre-specified thresholds and static graphical representations can lead to incorrect decisions on merging of clusters. As an alternative to existing automated or semi-automated methods, we developed a visual analytics approach for performing hierarchical clustering analysis of short time-series gene expression data. Dynamic sliders control parameters such as the similarity threshold at which clusters are merged and the level of relative intra-cluster distinctiveness, which can be used to identify "weak-edges" within clusters. An expert user can drill down to further explore the dendrogram and detect nested clusters and outliers. This is done by using the sliders and by pointing and clicking on the representation to cut the branches of the tree in multiple-heights. A prototype of this tool has been developed in collaboration with a small group of biologists for analysing their own datasets. Initial feedback on the tool has been positive.