6 resultados para Dynamic storage allocation (Computer science)

em Repository Napier


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model Driven based approach for Service Evolution in Clouds will mainly focus on the reusable evolution patterns' advantage to solve evolution problems. During the process, evolution pattern will be driven by MDA models to pattern aspects. Weaving the aspects into service based process by using Aspect-Oriented extended BPEL engine at runtime will be the dynamic feature of the evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SQL Injection Attack (SQLIA) remains a technique used by a computer network intruder to pilfer an organisation’s confidential data. This is done by an intruder re-crafting web form’s input and query strings used in web requests with malicious intent to compromise the security of an organisation’s confidential data stored at the back-end database. The database is the most valuable data source, and thus, intruders are unrelenting in constantly evolving new techniques to bypass the signature’s solutions currently provided in Web Application Firewalls (WAF) to mitigate SQLIA. There is therefore a need for an automated scalable methodology in the pre-processing of SQLIA features fit for a supervised learning model. However, obtaining a ready-made scalable dataset that is feature engineered with numerical attributes dataset items to train Artificial Neural Network (ANN) and Machine Leaning (ML) models is a known issue in applying artificial intelligence to effectively address ever evolving novel SQLIA signatures. This proposed approach applies numerical attributes encoding ontology to encode features (both legitimate web requests and SQLIA) to numerical data items as to extract scalable dataset for input to a supervised learning model in moving towards a ML SQLIA detection and prevention model. In numerical attributes encoding of features, the proposed model explores a hybrid of static and dynamic pattern matching by implementing a Non-Deterministic Finite Automaton (NFA). This combined with proxy and SQL parser Application Programming Interface (API) to intercept and parse web requests in transition to the back-end database. In developing a solution to address SQLIA, this model allows processed web requests at the proxy deemed to contain injected query string to be excluded from reaching the target back-end database. This paper is intended for evaluating the performance metrics of a dataset obtained by numerical encoding of features ontology in Microsoft Azure Machine Learning (MAML) studio using Two-Class Support Vector Machines (TCSVM) binary classifier. This methodology then forms the subject of the empirical evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays there is almost no crime committed without a trace of digital evidence, and since the advanced functionality of mobile devices today can be exploited to assist in crime, the need for mobile forensics is imperative. Many of the mobile applications available today, including internet browsers, will request the user’s permission to access their current location when in use. This geolocation data is subsequently stored and managed by that application's underlying database files. If recovered from a device during a forensic investigation, such GPS evidence and track points could hold major evidentiary value for a case. The aim of this paper is to examine and compare to what extent geolocation data is available from the iOS and Android operating systems. We focus particularly on geolocation data recovered from internet browsing applications, comparing the native Safari and Browser apps with Google Chrome, downloaded on to both platforms. All browsers were used over a period of several days at various locations to generate comparable test data for analysis. Results show considerable differences not only in the storage locations and formats, but also in the amount of geolocation data stored by different browsers and on different operating systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rigid adherence to pre-specified thresholds and static graphical representations can lead to incorrect decisions on merging of clusters. As an alternative to existing automated or semi-automated methods, we developed a visual analytics approach for performing hierarchical clustering analysis of short time-series gene expression data. Dynamic sliders control parameters such as the similarity threshold at which clusters are merged and the level of relative intra-cluster distinctiveness, which can be used to identify "weak-edges" within clusters. An expert user can drill down to further explore the dendrogram and detect nested clusters and outliers. This is done by using the sliders and by pointing and clicking on the representation to cut the branches of the tree in multiple-heights. A prototype of this tool has been developed in collaboration with a small group of biologists for analysing their own datasets. Initial feedback on the tool has been positive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Choosing a single similarity threshold for cutting dendrograms is not sufficient for performing hierarchical clustering analysis of heterogeneous data sets. In addition, alternative automated or semi-automated methods that cut dendrograms in multiple levels make assumptions about the data in hand. In an attempt to help the user to find patterns in the data and resolve ambiguities in cluster assignments, we developed MLCut: a tool that provides visual support for exploring dendrograms of heterogeneous data sets in different levels of detail. The interactive exploration of the dendrogram is coordinated with a representation of the original data, shown as parallel coordinates. The tool supports three analysis steps. Firstly, a single-height similarity threshold can be applied using a dynamic slider to identify the main clusters. Secondly, a distinctiveness threshold can be applied using a second dynamic slider to identify “weak-edges” that indicate heterogeneity within clusters. Thirdly, the user can drill-down to further explore the dendrogram structure - always in relation to the original data - and cut the branches of the tree at multiple levels. Interactive drill-down is supported using mouse events such as hovering, pointing and clicking on elements of the dendrogram. Two prototypes of this tool have been developed in collaboration with a group of biologists for analysing their own data sets. We found that enabling the users to cut the tree at multiple levels, while viewing the effect in the original data, is a promising method for clustering which could lead to scientific discoveries.