2 resultados para Distribution network reconfiguration

em Repository Napier


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work comprises a new theoretical development applied to aid decision making in an increasingly important commercial sector. Agile supply, where small volumes of high margin, short life cycle innovative products are offered, is increasingly carried out through a complex global supply chain network. We outline an equilibrium solution in such a supply chain network, which works through limited cooperation and coordination along edges (links) in the network. The links constitute the stochastic modelling entities rather than the nodes of the network. We utilise newly developed phase plane analysis to identify, model and predict characteristic behaviour in supply chain networks. The phase plane charts profile the flow of inventory and identify out of control conditions. They maintain quality within the network, as well as intelligently track the way the network evolves in conditions of changing variability. The methodology is essentially distribution free, relying as it does on the study of forecasting errors, and can be used to examine contractual details as well as strategic and game theoretical concepts between decision-making components (agents) of a network. We illustrate with typical data drawn from supply chain agile fashion products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reducing the energy consumption of water distribution networks has never had more significance. The greatest energy savings can be obtained by carefully scheduling the operations of pumps. Schedules can be defined either implicitly, in terms of other elements of the network such as tank levels, or explicitly by specifying the time during which each pump is on/off. The traditional representation of explicit schedules is a string of binary values with each bit representing pump on/off status during a particular time interval. In this paper, we formally define and analyze two new explicit representations based on time-controlled triggers, where the maximum number of pump switches is established beforehand and the schedule may contain less switches than the maximum. In these representations, a pump schedule is divided into a series of integers with each integer representing the number of hours for which a pump is active/inactive. This reduces the number of potential schedules compared to the binary representation, and allows the algorithm to operate on the feasible region of the search space. We propose evolutionary operators for these two new representations. The new representations and their corresponding operations are compared with the two most-used representations in pump scheduling, namely, binary representation and level-controlled triggers. A detailed statistical analysis of the results indicates which parameters have the greatest effect on the performance of evolutionary algorithms. The empirical results show that an evolutionary algorithm using the proposed representations improves over the results obtained by a recent state-of-the-art Hybrid Genetic Algorithm for pump scheduling using level-controlled triggers.