5 resultados para Demand-Responsive Transportation Systems.
em Repository Napier
Resumo:
This paper presents MOTION, a modular on-line model for urban traffic signal control. It consists of a network and a local level and builds on enhanced traffic state estimation. Special consideration is given to the prioritization of public transit. MOTION provides possibilities for the interaction with integrated urban management systems.
Resumo:
Knowledge on human behaviour in emergency is crucial to increase the safety of buildings and transportation systems. Decision making during evacuations implies different choices, of which one of the most important concerns the escape route. The choice of a route may involve local decisions between alternative exits from an enclosed environment. This work investigates the influence of environmental (presence of smoke, emergency lighting and distance of exit) and social factors (interaction with evacuees close to the exits and with those near the decision-maker) on local exit choice. This goal is pursued using an online stated preference survey carried out making use of non-immersive virtual reality. A sample of 1,503 participants is obtained and a Mixed Logit Model is calibrated using these data. The model shows that presence of smoke, emergency lighting, distance of exit, number of evacuees near the exits and the decision-maker, and flow of evacuees through the exits significantly affect local exit choice. Moreover, the model points out that decision making is affected by a high degree of behavioural uncertainty. Our findings support the improvement of evacuation models and the accuracy of their results, which can assist in designing and managing building and transportation systems. The main contribution of this work is to enrich the understanding of how local exit choices are made and how behavioural uncertainty affects these choices.
Resumo:
This paper adapts Freeman’s measures of degree, closeness and betweenness centrality and applies them to assessing: port centrality in relation to direct connectivity; accessibility to all ports in the network (direct and indirect routes) and; as an intermediary between other ports. An additional parameter added to the formulae ensures that the relative importance of available shipping capacity and foreland market coverage are also accounted for. Validation of this adapted measure is provided by the results obtained from an empirical application. These reveal that foreland market coverage exerts a particularly strong influence on a port’s demand and closeness centrality