2 resultados para Cohesive solid
em Repository Napier
Resumo:
The aim of the present study was to assess the factors which may influence the timing of the introduction of solid food to infants. The design was a prospective cohort study by interview and postal questionnaire. Primiparous women (n 541) aged between 16 and 40 years were approached in the Forth Park Maternity Hospital, Fife, Scotland. Of these, 526 women agreed to participate and seventy-eight were used as subjects in the pilot study. At 12 weeks we interviewed 338 women of the study sample. The postal questionnaire was returned by 286 of 448 volunteers. At 12 weeks 133 of 338 mothers said that they had introduced solids. Those that said that they had introduced solids early (<12 weeks) were compared with those who had introduced solids late (>12 weeks) by bivariate and multiple regression analysis. Psychosocial factors influencing the decision were measured with the main outcome measure being the time of introduction of solid food. The early introduction of solids was found to be associated with: the opinions of the infant's maternal grandmother; living in a deprived area; personal disagreement with the advice to wait until the baby was 4 months; lack of encouragement from friends to wait until the baby was 4 months; being in receipt of free samples of manufactured food. Answers to open-ended questions indicated that the early introduction appeared to be influenced by the mothers’ perceptions of the baby's needs. Some of the factors influencing a woman's decision to introduce solids are amenable to change, and these could be targeted in educational interventions.
Resumo:
Offshore wind turbines supported on monopile foundations are dynamically sensitive because the overall natural frequencies of these structures are close to the different forcing frequencies imposed upon them. The structures are designed for an intended life of 25 to 30 years, but little is known about their long term behaviour. To study their long term behaviour, a series of laboratory tests were conducted in which a scaled model wind turbine supported on a monopile in kaolin clay was subjected to between 32,000 and 172,000 cycles of horizontal loading and the changes in natural frequency and damping of the model were monitored. The experimental results are presented using a non-dimensional framework based on an interpretation of the governing mechanics. The change in natural frequency was found to be strongly dependent on the shear strain level in the soil next to the pile. Practical guidance for choosing the diameter of monopile is suggested based on element test results using the concept of volumetric threshold shear strain.