1 resultado para Clonal propagation
em Repository Napier
Filtro por publicador
- Repository Napier (1)
- Aberystwyth University Repository - Reino Unido (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (11)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (10)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (46)
- Boston University Digital Common (4)
- Bucknell University Digital Commons - Pensilvania - USA (6)
- CaltechTHESIS (16)
- Cambridge University Engineering Department Publications Database (148)
- CentAUR: Central Archive University of Reading - UK (48)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (135)
- Cochin University of Science & Technology (CUSAT), India (21)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (1)
- DigitalCommons - The University of Maine Research (5)
- DigitalCommons@The Texas Medical Center (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (15)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (14)
- Greenwich Academic Literature Archive - UK (6)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (112)
- Infoteca EMBRAPA (1)
- Instituto Politécnico do Porto, Portugal (4)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (104)
- Queensland University of Technology - ePrints Archive (52)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (76)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (20)
- Universidade Federal do Pará (3)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Montréal, Canada (6)
- University of Queensland eSpace - Australia (1)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
Clonal selection has been a dominant theme in many immune-inspired algorithms applied to machine learning and optimisation. We examine existing clonal selections algorithms for learning from a theoertical and empirical perspective and assert that the widely accepted computational interpretation of clonal selection is compromised both algorithmically andbiologically. We suggest a more capable abstraction of the clonal selection principle grounded in probabilistic estimation and approximation and demonstrate how it addresses some of the shortcomings in existing algorithms. We further show that by recasting black-box optimisation as a learning problem, the same abstraction may be re-employed; thereby taking steps toward unifying the clonal selection principle and distinguishing it from natural selection.