1 resultado para Clonal plasticity
em Repository Napier
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (19)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (75)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (5)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (76)
- CentAUR: Central Archive University of Reading - UK (16)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (51)
- Coffee Science - Universidade Federal de Lavras (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (8)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (18)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (36)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Helda - Digital Repository of University of Helsinki (43)
- Indian Institute of Science - Bangalore - Índia (102)
- Infoteca EMBRAPA (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Gulbenkian de Ciência (2)
- National Center for Biotechnology Information - NCBI (56)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Publishing Network for Geoscientific & Environmental Data (6)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (44)
- Queensland University of Technology - ePrints Archive (151)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (41)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- School of Medicine, Washington University, United States (3)
- Universidad Politécnica de Madrid (7)
- Universidade Complutense de Madrid (4)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (4)
- Université de Montréal (3)
- Université de Montréal, Canada (12)
- University of Connecticut - USA (2)
- University of Michigan (4)
- University of Queensland eSpace - Australia (19)
- University of Washington (1)
Resumo:
Clonal selection has been a dominant theme in many immune-inspired algorithms applied to machine learning and optimisation. We examine existing clonal selections algorithms for learning from a theoertical and empirical perspective and assert that the widely accepted computational interpretation of clonal selection is compromised both algorithmically andbiologically. We suggest a more capable abstraction of the clonal selection principle grounded in probabilistic estimation and approximation and demonstrate how it addresses some of the shortcomings in existing algorithms. We further show that by recasting black-box optimisation as a learning problem, the same abstraction may be re-employed; thereby taking steps toward unifying the clonal selection principle and distinguishing it from natural selection.