3 resultados para Building performance

em Repository Napier


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Window design plays an important role in achieving energy efficient buildings and in providing thermal comfort of building occupants. This paper investigates a newly developed aerogel window and the potential improvement on the comfort factors of an office in relation to daylighting. Improved comfort levels can impact on health and wellbeing of building occupants leading to knock on effects on absenteeism and productivity. A simulation tool was presently created that will easily enable comparison of different façade design and their impact on heat and light transmission and therefore enable optimisation. One of the most important aspects of the present work was comparing the performance of the newly developed aerogel window against the more traditional Argon-filled, coated double-glazing. Whereas the aerogel window provided an extremely low heat-loss index of 0.3 W/m2K, the latter usually offered a centre-glazing U-value of 1.4 W/m2K. On a like-with-like basis the daylight transmission of the aerogel window was significantly lower than double-glazing. However, in view of low thermal loss larger areas of the former can be deployed. This article presents the influence of three key parameters that may lead to an optimum design: daylight, thermal loss and solar gain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smoking restrictions in the workplace and increased health consciousness at home have seen a sizable reduction in the number of spaces where smoking is permissible. The aim of this study was to investigate the effects of ventilation in public houses, one of the few remaining public spaces where smoking is still socially acceptable. Little is known about the situation with shared occupancies, where relatively large areas are intended to accommodate both smokers and non-smokers. This study clearly identifies potential problems with a simplistic design approach to ventilation and its effectiveness in the context of shared occupancy spaces. A computational fluid dynamics code has been used to model airflows with the aim of identifying inefficiencies in existing ventilation systems.