1 resultado para Bio-inspired
em Repository Napier
Filtro por publicador
- Repository Napier (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Campus - Alm@DL - Università di Bologna (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (19)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (10)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Applied Math and Science Education Repository - Washington - USA (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (54)
- Aston University Research Archive (2)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (4)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Bibloteca do Senado Federal do Brasil (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (40)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (46)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (1)
- Cochin University of Science & Technology (CUSAT), India (8)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (24)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (5)
- Dalarna University College Electronic Archive (7)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (7)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons @ Winthrop University (1)
- Digital Peer Publishing (4)
- DigitalCommons - The University of Maine Research (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (18)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (2)
- Institute of Public Health in Ireland, Ireland (2)
- Instituto Politécnico do Porto, Portugal (13)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (16)
- Ministerio de Cultura, Spain (4)
- National Center for Biotechnology Information - NCBI (2)
- Open Access Repository of Indian Theses (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (3)
- Publishing Network for Geoscientific & Environmental Data (292)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (3)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (8)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (62)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (22)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- Scielo Saúde Pública - SP (19)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad de Alicante (8)
- Universidad del Rosario, Colombia (6)
- Universidad Politécnica de Madrid (36)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (22)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (11)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (29)
- Université de Montréal (1)
- Université de Montréal, Canada (14)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (9)
Resumo:
Recent years have seen an astronomical rise in SQL Injection Attacks (SQLIAs) used to compromise the confidentiality, authentication and integrity of organisations’ databases. Intruders becoming smarter in obfuscating web requests to evade detection combined with increasing volumes of web traffic from the Internet of Things (IoT), cloud-hosted and on-premise business applications have made it evident that the existing approaches of mostly static signature lack the ability to cope with novel signatures. A SQLIA detection and prevention solution can be achieved through exploring an alternative bio-inspired supervised learning approach that uses input of labelled dataset of numerical attributes in classifying true positives and negatives. We present in this paper a Numerical Encoding to Tame SQLIA (NETSQLIA) that implements a proof of concept for scalable numerical encoding of features to a dataset attributes with labelled class obtained from deep web traffic analysis. In the numerical attributes encoding: the model leverages proxy in the interception and decryption of web traffic. The intercepted web requests are then assembled for front-end SQL parsing and pattern matching by applying traditional Non-Deterministic Finite Automaton (NFA). This paper is intended for a technique of numerical attributes extraction of any size primed as an input dataset to an Artificial Neural Network (ANN) and statistical Machine Learning (ML) algorithms implemented using Two-Class Averaged Perceptron (TCAP) and Two-Class Logistic Regression (TCLR) respectively. This methodology then forms the subject of the empirical evaluation of the suitability of this model in the accurate classification of both legitimate web requests and SQLIA payloads.