3 resultados para telomere end binding protein

em KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expression of a gene from transcription of the DNA into pre-messenger RNA (pre-mRNA) over translation of messenger RNA (mRNA) into protein is constantly monitored for errors. This quality control is necessary to guarantee successful gene expression. One quality control mechanism important to this thesis is called nonsense-mediated mRNA decay (NMD). NMD is a cellular process that eliminates mRNA transcripts harboring premature translation termination codons (PTCs). Furthermore, NMD is known to regulate certain transcripts with long 3′ UTRs. However, some mRNA transcripts are known to evade NMD. The mechanism of NMD activation has been subjected to many studies whereas NMD evasion or suppression still remains rather elusive. It has previously been shown that the cytoplasmic poly(A)-binding protein (PABPC1) is able to suppress NMD of certain transcripts. In this study I show that PABPC1 is able to suppress NMD of a long 3′ UTR-carrying reporter when tethered immediately downstream of the termination codon. I further am able to show the importance of the interaction between PABPC1 and eIF4G for NMD suppression, whereas the interaction between PABPC1 and eRF3a seems dispensable. These results indicate an involvement of efficient translation termination and potentially ribosome recycling in NMD suppression. I am able to show that if PABPC1 is too far removed from the terminating ribosome NMD is activated. After showing the importance of PABPC1 recruitment directly downstream of a terminating ribosome in NMD suppression, I am further able to demonstrate several different methods by which PABPC1 can be recruited. Fold-back of the poly(A)-tail mediated by two interacting proteins on opposite ends of a 3′ UTR manages to bring PABPC1 bound to the poly(A)-tail into close proximity of the terminating ribosome and therefore suppress NMD. Furthermore, small PAM2 peptides that are known to interact with the MLLE domain of PABPC1 are able to strongly suppress NMD initiated by either a long 3′ UTR or an EJC. I am also able to show the NMD antagonizing power of recruited PABPC1 for the known endogenous NMD target β-globin PTC39, which is responsible for the disease β-thalassemia. This shows the potential medical implications and application of suppressing NMD by recruiting PABPC1 into close proximity of a terminating ribosome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through recent advances in high-throughput mass spectrometry it has become evident that post-translational N-(epsilon)-lysine-acetylation is a modification found on thousands of proteins of all cellular compartments and all essential physiological processes. Many aspects in the biology of lysine-acetylation are poorly understood, including its regulation by lysine-acetyltransferases and lysine-deacetylases (KDACs). Here, the role of this modification was investigated for the small GTP-binding protein Ran, which, inter alia, is essential for the regulation of nucleocytoplasmic transport. To this end, site-specifically acetylated Ran was produced in E. coli by genetic code expansion. For five previously identified sites, Ran acetylation was tested regarding its impact on the intrinsic GTP hydrolysis rate, the assembly of export complexes (modeled in vitro with the export receptor CRM1 and the export substrate Spn1) and the interaction of Ran with its GTPase activation protein RanGAP and RanBP1. Overall, mild effects of Ran acetylation were observed for intrinsic and RanGAP-stimulated GTP hydrolysis rates. The interaction of active Ran with RanBP1 was negatively influenced by Ran acetylation at K159. Moreover, CRM1 bound to Ran acetylated at K37, K99 or K159 interacted more strongly with Spn1. Thus, lysine-acetylation interferes with essential aspects of Ran function. An in vitro screen was performed to identify potential Ran KDACs. The NAD+-dependent KDACs of the Sirtuin class showed activity towards two acetylation sites of Ran, K37 and K71. The specificity of Sirtuins was further analyzed based on an additional Ran acetylation site, K38. Since deacetylation of RanAcK38 was much slower compared to RanAcK37, di-acetylated RanAcK37/38 was tested next. The deacetylation rate of di-acetylated Ran was comparable to that of RanAcK37. Deacetylation experiments under single turnover conditions revealed that deacetylation occurs first at the K38 site in the di-acetylated RanAcK37/38 background. The ability of Sirtuins to deacetylate two adjacent AcKs was further investigated based on two proteins, which had previously been found to be di-acetylated and targeted by Sirtuins, namely the tumor suppressor protein p53 and phosphoenolpyruvate carboxykinase 1 (PEPCK1). p53 was readily deacetylated at two di-acetylation sites (K372/372 and K381/382), whereas PEPCK1 was not deacetylated in vitro. Taken together, these results have important implications for the substrate specificity of Sirtuins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Endosomal Sorting Complex Required for Transport (ESCRT)-complex is composed of four complexes, ESCRT-0-III. They sequentially act on a late endosome to sort mono-ubiquitinated transmembrane proteins into the intralumenal vesicle, forming of a multivesicular body(MVB) that is delivered to vacuole for degradation. In Arabidopsis thaliana, the loss of an ESCRT-I component, elch displays a cytokinesis defect; while a dominant negative expression of an ESCRT-III component results in cell death due to vacuolar loss. In this work, the function of a plant-specific ELCH-interactor, CELL DEATH RELATED FYVE/SYLF DOMAIN CONTAINING 1 (CFS1) and its influences on the ESCRT-complex function are investigated. CFS1 is a phosphatidylinositol-3-phosphate- and actin-binding protein. The cfs1 mutants mimic lesions in the first eldest leaf that propagate to the next eldest one. Genetic analyses have demonstrated that cell death in cfs1 does not require a functional ESCRT-I component; nevertheless, the loss of CFS1 alleviates elchcytokinesis defect, suggesting its influence on the ESCRT-I function. Further analyses reveal that cfs1 accumulates autophagosomes throughout its lifespan due to a decrease in autophagosome degradation, suggesting that as the plant ages, the cumulated autophagosomes falsely trigger effectors-triggered immunity that executes cell death in cfs1. As the ESCRT-complex has been demonstrated to be involved in the delivery of autophagosomes to vacuole and CFS1 homolog, CFS2 reportedly interacts with ATG8, it can be postulated from the results of this work that CFS1 alone or together with CFS2 function in sequestering mature autophagosomes onto MVBs. At the MVBs, the ESCRT-complex then mediates the fusion of autophagosome and MVB for subsequent delivery to vacuole.