2 resultados para spatio-temporal
em KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer
Resumo:
The present study explores EUropean geopolitical agency in a distinct spatio-temporal context: the Arctic region of the early 21st century. Thus, it provides an in-depth analysis of the European Union’s process to construct EUropean legitimacy and credibility in its ‘Northern Neighbourhood’ between 2008 and 2014. Embedded in a conceptual and methodological framework using critical geopolitics, this study assesses the strategic policy reasoning of the EU and the implicit geopolitical discourses that guide and determine a particular line of argumentation so as to claim a ‘legitimate’ role in the Arctic and accordingly construct a distinct ‘EUropean Arctic space’. In doing so, it establishes a clearer picture on the (narrated) regional interests of the EU and the related developed policy and concrete steps taken in order to get hold of these interests. Eventually, the analysis gets to the conceptual bottom of what exactly fashioned the EU with geopolitical agency in the circumpolar North. As a complementary explanation, this study provides a thick description of the area under scrutiny – the Arctic region – in order to explicate the systemic context that conditioned the EU’s regional demeanour and action. Elucidated along the lines of Arctic history and identity, rights, interests and responsibility, it delineates the emergence of the Arctic as a region of and for geopolitics. The findings indicate that the sui generis character of the Arctic as EUropean neighbourhood essentially determined the EU’s regional performance. It explicates that the Union’s ‘traditional’ geopolitical models of civilian or normative power got entangled in a fluid state of Arctic affairs: a distinct regional system, characterised by few strong state actors with pronounced national Arctic interests and identities, and an indefinite local context of environmental changes, economic uncertainties and social challenges. This study applies critical geopolitics in a Political Science context and essentially contributes to a broader understanding of EU foreign policy construction and behaviour. Ultimately, it offers an interdisciplinary approach on how to analyse EU external action by explicitly taking into account the internal and external social processes that ultimately condition a certain EUropean foreign policy performance.
Resumo:
Over the past decades star formation has been a very attractive field because knowledge of star formation leads to a better understanding of the formation of planets and thus of our solar system but also of the evolution of galaxies. Conditions leading to the formation of high-mass stars are still under investigation but an evolutionary scenario has been proposed: As a cold pre-stellar core collapses under gravitational force, the medium warms up until it reaches a temperature of 100 K and enters the hot molecular core (HMC) phase. The forming central proto-star accretes materials, increasing its mass and luminosity and eventually it becomes sufficiently evolved to emit UV photons which irradiate the surrounding environment forming a hyper compact (HC) and then a ultracompact (UC) HII region. At this stage, a very dense and very thin internal photon-dominated region (PDR) forms between the HII region and the molecular core. Information on the chemistry allows to trace the physical processes occurring in these different phases of star formation. Formation and destruction routes of molecules are influenced by the environment as reaction rates depend on the temperature and radiation field. Therefore, chemistry also allows the determination of the evolutionary stage of astrophysical objects through the use of chemical models including the time evolution of the temperature and radiation field. Because HMCs host a very rich chemistry with high abundances of complex organic molecules (COMs), several astrochemical models have been developed to study the gas phase chemistry as well as grain chemistry in these regions. In addition to HMCs models, models of PDRs have also been developed to study in particular photo-chemistry. So far, few studies have investigated internal PDRs and only in the presence of outflows cavities. Thus, these unique regions around HC/UCHII regions remain to be examined thoroughly. My PhD thesis focuses on the spatio-temporal chemical evolution in HC/UC HII regions with internal PDRs as well as in HMCs. The purpose of this study is first to understand the impact and effects of the radiation field, usually very strong in these regions, on the chemistry. Secondly, the goal is to study the emission of various tracers of HC/UCHII regions and compare it with HMCs models, where the UV radiation field does not impact the region as it is immediately attenuated by the medium. Ultimately we want to determine the age of a given region using chemistry in combination with radiative transfer.