2 resultados para finite-time stability

em KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent papers, Wied and his coauthors have introduced change-point procedures to detect and estimate structural breaks in the correlation between time series. To prove the asymptotic distribution of the test statistic and stopping time as well as the change-point estimation rate, they use an extended functional Delta method and assume nearly constant expectations and variances of the time series. In this thesis, we allow asymptotically infinitely many structural breaks in the means and variances of the time series. For this setting, we present test statistics and stopping times which are used to determine whether or not the correlation between two time series is and stays constant, respectively. Additionally, we consider estimates for change-points in the correlations. The employed nonparametric statistics depend on the means and variances. These (nuisance) parameters are replaced by estimates in the course of this thesis. We avoid assuming a fixed form of these estimates but rather we use "blackbox" estimates, i.e. we derive results under assumptions that these estimates fulfill. These results are supplement with examples. This thesis is organized in seven sections. In Section 1, we motivate the issue and present the mathematical model. In Section 2, we consider a posteriori and sequential testing procedures, and investigate convergence rates for change-point estimation, always assuming that the means and the variances of the time series are known. In the following sections, the assumptions of known means and variances are relaxed. In Section 3, we present the assumptions for the mean and variance estimates that we will use for the mean in Section 4, for the variance in Section 5, and for both parameters in Section 6. Finally, in Section 7, a simulation study illustrates the finite sample behaviors of some testing procedures and estimates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With progressive climate change, the preservation of biodiversity is becoming increasingly important. Only if the gene pool is large enough and requirements of species are diverse, there will be species that can adapt to the changing circumstances. To maintain biodiversity, we must understand the consequences of the various strategies. Mathematical models of population dynamics could provide prognoses. However, a model that would reproduce and explain the mechanisms behind the diversity of species that we observe experimentally and in nature is still needed. A combination of theoretical models with detailed experiments is needed to test biological processes in models and compare predictions with outcomes in reality. In this thesis, several food webs are modeled and analyzed. Among others, models are formulated of laboratory experiments performed in the Zoological Institute of the University of Cologne. Numerical data of the simulations is in good agreement with the real experimental results. Via numerical simulations it can be demonstrated that few assumptions are necessary to reproduce in a model the sustained oscillations of the population size that experiments show. However, analysis indicates that species "thrown together by chance" are not very likely to survive together over long periods. Even larger food nets do not show significantly different outcomes and prove how extraordinary and complicated natural diversity is. In order to produce such a coexistence of randomly selected species—as the experiment does—models require additional information about biological processes or restrictions on the assumptions. Another explanation for the observed coexistence is a slow extinction that takes longer than the observation time. Simulated species survive a comparable period of time before they die out eventually. Interestingly, it can be stated that the same models allow the survival of several species in equilibrium and thus do not follow the so-called competitive exclusion principle. This state of equilibrium is more fragile, however, to changes in nutrient supply than the oscillating coexistence. Overall, the studies show, that having a diverse system means that population numbers are probably oscillating, and on the other hand oscillating population numbers stabilize a food web both against demographic noise as well as against changes of the habitat. Model predictions can certainly not be converted at their face value into policies for real ecosystems. But the stabilizing character of fluctuations should be considered in the regulations of animal populations.