2 resultados para Single median maxillary central incisor

em KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is a description of Tajio, a Western Malayo-Polynesian language spoken in Central Sulawesi, Indonesia. It covers the essential aspects of Tajio grammar without being exhaustive. Tajio has a medium sized phoneme inventory consisting of twenty consonants and five vowels. The language does not have lexical (word) stress; rather, it has a phrasal accent. This phrasal accent regularly occurs on the penultimate syllable of an intonational phrase, rendering this syllable auditorily prominent through a pitch rise. Possible syllable structures in Tajio are (C)V(C). CVN structures are allowed as closed syllables, but CVN syllables in word-medial position are not frequent. As in other languages in the area, the only sequence of consonants allowed in native Tajio words are sequences of nasals followed by a homorganic obstruent. The homorganic nasal-obstruent sequences found in Tajio can occur word-initially and word-medially but never in word-final position. As in many Austronesian languages, word class classification in Tajio is not straightforward. The classification of words in Tajio must be carried out on two levels: the morphosyntactic level and the lexical level. The open word classes in Tajio consist of nouns and verbs. Verbs are further divided into intransitive verbs (dynamic intransitive verbs and statives) and dynamic transitive verbs. Based on their morphological potential, lexical roots in Tajio fall into three classes: single-class roots, dual-class roots and multi-class roots. There are two basic transitive constructions in Tajio: Actor Voice and Undergoer Voice, where the actor or undergoer argument respectively serves as subjects. It shares many characteristics with symmetrical voice languages, yet it is not fully symmetric, as arguments in AV and UV are not equally marked. Neither subjects nor objects are marked in AV constructions. In UV constructions, however, subjects are unmarked while objects are marked either by prefixation or clitization. Evidence from relativization, control and raising constructions supports the analysis that AV and UV are in fact transitive, with subject arguments and object arguments behaving alike in both voices. Only the subject can be relativized, controlled, raised or function as the implicit subject of subjectless adverbial clauses. In contrast, the objects of AV and UV constructions do not exhibit these features. Tajio is a predominantly head-marking language with basic A-V-O constituent order. V and O form a constituent, and the subject can either precede or follow this complex. Thus, basic word order is S-V-O or V-O-S. Subject, as well as non-subject arguments, may be omitted when contextually specified. Verbs are marked for voice and mood, the latter of which is is obligatory. The two values distinguished are realis and non-realis. Depending on the type of predicate involved in clause formation, three clause types can be distinguished: verbal clauses, existential clauses and non-verbal clauses. Tajio has a small number of multi-verbal structures that appear to qualify as serial verb constructions. SVCs in Tajio always include a motion verb or a directional.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Near-infrared polarimetry observation is a powerful tool to study the central sources at the center of the Milky Way. My aim of this thesis is to analyze the polarized emission present in the central few light years of the Galactic Center region, in particular the non-thermal polarized emission of Sagittarius~A* (Sgr~A*), the electromagnetic manifestation of the super-massive black hole, and the polarized emission of an infrared-excess source in the literature referred to as DSO/G2. This source is in orbit about Sgr~A*. In this thesis I focus onto the Galactic Center observations at $\lambda=2.2~\mu m$ ($K_\mathrm{s}$-band) in polarimetry mode during several epochs from 2004 to 2012. The near-infrared polarized observations have been carried out using the adaptive optics instrument NAOS/CONICA and Wollaston prism at the Very Large Telescope of ESO (European Southern Observatory). Linear polarization at 2.2 $\mu m$, its flux statistics and time variation, can be used to constrain the physical conditions of the accretion process onto the central super-massive black hole. I present a statistical analysis of polarized $K_\mathrm{s}$-band emission from Sgr~A* and investigate the most comprehensive sample of near-infrared polarimetric light curves of this source up to now. I find several polarized flux excursions during the years and obtain an exponent of about 4 for the power-law fitted to polarized flux density distribution of fluxes above 5~mJy. Therefore, this distribution is closely linked to the single state power-law distribution of the total $K_\mathrm{s}$-band flux densities reported earlier by us. I find polarization degrees of the order of 20\%$\pm$10\% and a preferred polarization angle of $13^o\pm15^o$. Based on simulations of polarimetric measurements given the observed flux density and its uncertainty in orthogonal polarimetry channels, I find that the uncertainties of polarization parameters under a total flux density of $\sim 2\,{\mathrm{mJy}}$ are probably dominated by observational uncertainties. At higher flux densities there are intrinsic variations of polarization degree and angle within rather well constrained ranges. Since the emission is most likely due to optically thin synchrotron radiation, the obtained preferred polarization angle is very likely reflecting the intrinsic orientation of the Sgr~A* system i.e. an accretion disk or jet/wind scenario coupled to the super-massive black hole. Our polarization statistics show that Sgr~A* must be a stable system, both in terms of geometry, and the accretion process. I also investigate an infrared-excess source called G2 or Dusty S-cluster Object (DSO) moving on a highly eccentric orbit around the Galaxy's central black hole, Sgr~A*. I use for the first time the near-infrared polarimetric imaging data to determine the nature and the properties of DSO and obtain an improved $K_\mathrm{s}$-band identification of this source in median polarimetry images of different observing years. The source starts to deviate from the stellar confusion in 2008 data and it does not show a flux density variability based on our data set. Furthermore, I measure the polarization degree and angle of this source and conclude based on the simulations on polarization parameters that it is an intrinsically polarized source with a varying polarization angle as it approaches Sgr~A* position. I use the interpretation of the DSO polarimetry measurements to assess its possible properties.